2,038 research outputs found

    Midcourse maneuver operations program

    Get PDF
    Midcourse Maneuver Operations Program /MMOP/ computes the required velocity change to correct a spacecraft trajectory. The program establishes the existence of maneuvers which satisfy spacecraft constraints, explores alternate trajectories in the event that some out-of-tolerance condition forces a change in plans, and codes the maneuvers into commands

    Recent α\alpha decay half-lives and analytic expression predictions including superheavy nuclei

    Full text link
    New recent experimental α\alpha decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the α\alpha emitter and the Qα\alpha value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the α\alpha decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Qα\alpha of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)]

    Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tuc

    Full text link
    We aim to determine abundances of Li, O and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars. We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO5BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances. Our results confirm the existence of Na-O abundance anti-correlation and hint towards a possible Li-O anti-correlation in the TO stars of 47 Tuc. We find no convincing evidence supporting the existence of Li-Na correlation. The obtained 3D NLTE mean lithium abundance in a sample of 94 TO stars where Li lines were detected reliably, A(Li)3D NLTE=1.78±0.18\langle A({\rm Li})_{\rm 3D~NLTE}\rangle = 1.78 \pm 0.18 dex, appears to be significantly lower than what is observed in other globular clusters. At the same time, star-to-star spread in Li abundance is also larger than seen in other clusters. The highest Li abundance observed in 47 Tuc is about 0.1 dex lower than the lowest Li abundance observed among the un-depleted stars of the metal-poor open cluster NGC 2243. The lithium abundances in 47 Tuc, when put into context with observations in other clusters and field stars, suggest that stars that are more metal-rich than [FeH] \sim -1.0 experience significant lithium depletion during their lifetime on the main sequence, while the more metal-poor stars do not. Rather strikingly, our results suggest that initial lithium abundance with which the star was created may only depend on its age (the younger the star, the higher its Li content) and not on its metallicity.Comment: 24 pages, 13 figures; discussion and conclusions expanded. Accepted for publication in A&

    Photon-Neutrino Interactions

    Full text link
    We discuss the interaction of photons with neutrinos including two lepton loops. The parity violation in the gamma-nu to gamma-nu channel due to two lepton loops is substantially enhanced relative to the one lepton loop contribution. However there is no corresponding enhancement in the parity conserving amplitude in either the direct or the cross channel.Comment: 12 pages, 5 figure

    Properties and nature of Be stars 30. Reliable physical properties of a semi-detached B9.5e+G8III binary BR CMi = HD 61273 compared to those of other well studied semi-detached emission-line binaries

    Full text link
    Reliable determination of the basic physical properties of hot emission-line binaries with Roche-lobe filling secondaries is important for developing the theory of mass exchange in binaries. It is a very hard task, however, which is complicated by the presence of circumstellar matter in these systems. So far, only a small number of systems with accurate values of component masses, radii, and other properties are known. Here, we report the first detailed study of a new representative of this class of binaries, BR CMi, based on the analysis of radial velocities and multichannel photometry from several observatories, and compare its physical properties with those for other well-studied systems. BR CMi is an ellipsoidal variable seen under an intermediate orbital inclination of ~51 degrees, and it has an orbital period of 12.919059(15) d and a circular orbit. We used the disentangled component spectra to estimate the effective temperatures 9500(200) K and 4655(50) K by comparing them with model spectra. They correspond to spectral types B9.5e and G8III. We also used the disentangled spectra of both binary components as templates for the 2-D cross-correlation to obtain accurate RVs and a reliable orbital solution. Some evidence of a secular period increase at a rate of 1.1+/-0.5 s per year was found. This, together with a very low mass ratio of 0.06 and a normal mass and radius of the mass gaining component, indicates that BR CMi is in a slow phase of the mass exchange after the mass-ratio reversal. It thus belongs to a still poorly populated subgroup of Be stars for which the origin of Balmer emission lines is safely explained as a consequence of mass transfer between the binary components.Comment: 17 pages, 5 figures, accepted for publication in Astronomy and Astrophysics. appears in Astronomy and Astrophysics 201

    Uncoupling of EGFR–RAS signaling and nuclear localization of YBX1 in colorectal cancer

    Get PDF
    The transcription factor YBX1 can act as a mediator of signals transmitted via the EGFR–RAS–MAPK axis. YBX1 expression has been associated with tumor progression and prognosis in multiple types of cancer. Immunohistochemical studies have revealed dependency between YBX1 expression and individual EGFR family members. We analyzed YBX1 and EGFR family proteins in a colorectal cancer (CRC) cohort and provide functional analyses of YBX1 in the context of EGFR–RAS–MAPK signaling. Immunohistochemistry for YBX1 and EGFR family receptors with two antibodies for YBX1 and EGFR were performed and related to clinicopathological data. We employed Caco2 cells expressing an inducible KRASV12 gene to determine effects on localization and levels of YBX1. Mouse xenografts of Caco2-KRASV12 cells were used to determine YBX1 dynamics in a tissue context. The two different antibodies against YBX1 showed discordant immunohistochemical stainings in cell culture and clinical specimens. Expression of YBX1 and EGFR family members were not correlated in CRC. Analysis of Caco2 xenografts displayed again heterogeneity of YBX1 staining with both antibodies. Our results suggest that YBX1 is controlled via complex regulatory mechanisms involving tumor stroma interaction and signal transduction processes. Our study highlights that YBX1 antibodies have different specificities, advocating their use in a combined manner

    Fission of actinides through quasimolecular shapes

    Get PDF
    International audienceThe potential energy of heavy nuclei has been calculated in the quasimolecular shape path from a generalized liquid drop model including the proximity energy, the charge and mass asymmetries and the microscopic corrections. The potential barriers are multiple-humped. The second maximum is the saddle-point. It corresponds to the transition from compact one-body shapes with a deep neck to two touching ellipsoids. The scission point lies at the end of an energy plateau well below the saddle-point and where the effects of the nuclear attractive forces between two separated fragments vanish. The energy on this plateau is the sum of the kinetic and excitation energies of the fragments. The shell and pairing corrections play an essential role to select the most probable fission path. The potential barrier heights agree with the experimental data and the theoretical half-lives follow the trend of the experimental values. A third peak and a shallow third minimum appear in asymmetric decay paths when one fragment is close to a double magic quasi-spherical nucleus, while the smaller one changes from oblate to prolate shapes

    How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential

    Get PDF
    The problem of reconstructing a pure quantum state ¿¿> from measurable quantities is considered for a particle moving in a one-dimensional potential V(x). Suppose that the position probability distribution ¿¿(x,t)¿2 has been measured at time t, and let it have M nodes. It is shown that after measuring the time evolved distribution at a short-time interval ¿t later, ¿¿(x,t+¿t)¿2, the set of wave functions compatible with these distributions is given by a smooth manifold M in Hilbert space. The manifold M is isomorphic to an M-dimensional torus, TM. Finally, M additional expectation values of appropriately chosen nonlocal operators fix the quantum state uniquely. The method used here is the analog of an approach that has been applied successfully to the corresponding problem for a spin system

    Material anisotropy unveiled by random scattering of surface acoustic waves

    Get PDF
    We consider launching a monochromatic surface acoustic wave packet on a large set of random scatterers. The interference of the multiple scatteredwaves creates a random pattern of ripples on the crystal surface that is recorded by optical interferometry. The Fourier transform of the amplitude and phase data of the measured wave field unveils the complete slowness curve, i.e., the wave-vector as a function of the propagation angle. A simple acoustic speckle model is proposed to explain this observation.Peer reviewe

    Collapsing granular suspensions

    Full text link
    A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with real data obtained from in situ measurements performed with a natural collapsing/suspension soil. We show that the shear strength behavior of our collapsing suspension/soil model is very similar to the behavior of this collapsing suspension soil, for both the unperturbed and the perturbed phases of the material.Comment: 7 pages, 5 figures, accepted for publication in EPJ
    corecore