1,701 research outputs found
Recommended from our members
Three-Dimensionally Preserved Arthropods from the Cambrian (Furongian) of Quebec and Wisconsin: Systematics, Phylogeny, Ichnology, and Taphonomy
Three new types of arthropod from Cambrian intertidal lithofacies of the Elk Mound Group and Lodi Member of Wisconsin, and the Potsdam Group of Quebec are described. These arthropods are preserved ventrally in three dimensions â allowing detailed characterization of morphology. Arenocaris inflata, from the Furongian Elk Mound Group and St. Lawrence Formation, is the earliest occurrence of a phyllocarid. Mosineia macnaughtoni, a large (\u3e10 cm long) euthycarcinoid arthropod, also occurs in Elk Mound strata. Mictomerus melochevillensis represents a new family of early euthycarcinoids, and is a large (8â10+ cm long) arthropod with eleven pairs of homopodous, uniramous limbs.
Phylogenetic analyses and reviews of Paleozoic phyllocarid systematics are presented, using morphology-based characters from Cambrian to Recent taxa. Resulting cladograms place Arenocaris inflata into a systematic context, and reveal that the families Ceratiocarididae and Caryocarididae, as traditionally defined, are paraphyletic. Caryocarididae is elevated to subordinal rank (Caryocaridina n. suborder), resulting in two monophyletic suborders. Emended diagnoses are integrated into this analysis, and result in synonymy of 30 Cambrian â Silurian caryocaridids and ceratiocaridids into 11 pre-existing species.
The phyllocarid Arenocaris inflata from the Elk Mound Group of Wisconsin and the large enigmatic arthropod Mictomerus melochevillensis from The Potsdam Group of Quebec are both directly associated with trace fossils. Direct association between these arthropods and their traces allows functional morphological details of the animal to be assessed, provides a framework for understanding how arthropods can be sand-cast in three-dimensions, and helps provide insight about subaerially-produced traces from the Potsdam Group
A prospective study on obesity and subcutaneous fat patterning in relation to breast cancer in post-menopausal women participating in the DOM project.
The associations of body fat and body fat distribution with breast cancer risk were examined in a prospective study in 9,746 post-menopausal women with a natural menopause, aged 49-66 at intake, participating in a breast cancer screening project (the DOM project in Utrecht). During a follow-up period of 15 years (mean follow-up time 12.5 years) 260 women developed breast cancer. Fat distribution, assessed by contrasting groups of subcapsular and triceps skinfold thickness, was found to be unrelated to breast cancer incidence. No significant relationship between body fat, measured either by weight, Quetelet's index, triceps skinfold or subscapular skinfold, and breast cancer risk was found when analysed in quartiles. However, women in the upper decile compared with the lower decile of the distribution of Quetelet's index were found to have a 1.9 times (95% CI 1.1-3.3) higher risk for breast cancer. These results seemed to be in contrast with the significant positive association between fatness, analysed in quartiles, and breast cancer observed in a cross-sectional study, based on mammographic screening, carried out previously in the same population. Although the differences between the present, prospective, study and our cross-sectional study may be due to chance it may be that there are differences between characteristics of breast cancer detected at screening and subsequently, which influence the associations between measures of fatness and risk of breast cancer
Calcium and magnesium in human toenails do not reflect bone mineral density
Nail mineral composition is influenced by several physiological and pathological processes. Potentially, nails could be used to monitor alterations in the level of incorporation of specific elements produced by nutritional abnormalities, disease states or chronic exposure to toxic agents. The purpose of this study was to investigate whether the calcium and magnesium content in nail clippings, as measured by instrumental neutron activation analysis (INAA), correlates with bone mineral density (BMD), as measured by quantitative microdensitometry (QMD), and therefore could be interesting as a screening instrument for osteoporosis. The study involved 220 women, who participated in a breast cancer screening project (the DOM-project) in Utrecht, the Netherlands. The correlations found between Ca and Mg measurements and bone mineral densities were very low (correlation coefficients ranging from 0.03 to 0.18). It is concluded that Ca and Mg measurements in nail clippings by INAA cannot be used for screening purposes in the prevention of osteoporosis
An exact solution of the moving boundary problem for the relativistic plasma expansion in a dipole magnetic field
An exact analytic solution is obtained for a uniformly expanding, neutral,
highly conducting plasma sphere in an ambient dipole magnetic field with an
arbitrary orientation of the dipole moment in the space. Based on this solution
the electrodynamical aspects related to the emission and transformation of
energy have been considered. In order to highlight the effect of the
orientation of the dipole moment in the space we compare our results obtained
for parallel orientation with those for transversal orientation. The results
obtained can be used to treat qualitatively experimental and simulation data,
and several phenomena of astrophysical and laboratory significance.Comment: 7 pages, 2 figures. arXiv admin note: substantial text overlap with
arXiv:physics/060323
A Hierachical Evolutionary Algorithm for Multiobjective Optimization in IMRT
Purpose: Current inverse planning methods for IMRT are limited because they
are not designed to explore the trade-offs between the competing objectives
between the tumor and normal tissues. Our goal was to develop an efficient
multiobjective optimization algorithm that was flexible enough to handle any
form of objective function and that resulted in a set of Pareto optimal plans.
Methods: We developed a hierarchical evolutionary multiobjective algorithm
designed to quickly generate a diverse Pareto optimal set of IMRT plans that
meet all clinical constraints and reflect the trade-offs in the plans. The top
level of the hierarchical algorithm is a multiobjective evolutionary algorithm
(MOEA). The genes of the individuals generated in the MOEA are the parameters
that define the penalty function minimized during an accelerated deterministic
IMRT optimization that represents the bottom level of the hierarchy. The MOEA
incorporates clinical criteria to restrict the search space through protocol
objectives and then uses Pareto optimality among the fitness objectives to
select individuals.
Results: Acceleration techniques implemented on both levels of the
hierarchical algorithm resulted in short, practical runtimes for optimizations.
The MOEA improvements were evaluated for example prostate cases with one target
and two OARs. The modified MOEA dominated 11.3% of plans using a standard
genetic algorithm package. By implementing domination advantage and protocol
objectives, small diverse populations of clinically acceptable plans that were
only dominated 0.2% by the Pareto front could be generated in a fraction of an
hour.
Conclusions: Our MOEA produces a diverse Pareto optimal set of plans that
meet all dosimetric protocol criteria in a feasible amount of time. It
optimizes not only beamlet intensities but also objective function parameters
on a patient-specific basis
Statistical mechanics of Beltrami flows in axisymmetric geometry: Equilibria and bifurcations
We characterize the thermodynamical equilibrium states of axisymmetric
Euler-Beltrami flows. They have the form of coherent structures presenting one
or several cells. We find the relevant control parameters and derive the
corresponding equations of state. We prove the coexistence of several
equilibrium states for a given value of the control parameter like in 2D
turbulence [Chavanis and Sommeria, J. Fluid Mech. 314, 267 (1996)]. We explore
the stability of these equilibrium states and show that all states are saddle
points of entropy and can, in principle, be destabilized by a perturbation with
a larger wavenumber, resulting in a structure at the smallest available scale.
This mechanism is therefore reminiscent of the 3D Richardson energy cascade
towards smaller and smaller scales. Therefore, our system is truly intermediate
between 2D turbulence (coherent structures) and 3D turbulence (energy cascade).
We further explore numerically the robustness of the equilibrium states with
respect to random perturbations using a relaxation algorithm in both canonical
and microcanonical ensembles. We show that saddle points of entropy can be very
robust and therefore play a role in the dynamics. We evidence differences in
the robustness of the solutions in the canonical and microcanonical ensembles.
A scenario of bifurcation between two different equilibria (with one or two
cells) is proposed and discussed in connection with a recent observation of a
turbulent bifurcation in a von Karman experiment [Ravelet et al., Phys. Rev.
Lett. 93, 164501 (2004)].Comment: 25 pages; 16 figure
Characterisation and classification of oligometastatic disease : a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation
Oligometastatic disease has been proposed as an intermediate state between localised and systemically metastasised disease. In the absence of randomised phase 3 trials, early clinical studies show improved survival when radical local therapy is added to standard systemic therapy for oligometastatic disease. However, since no biomarker for the identification of patients with true oligometastatic disease is clinically available, the diagnosis of oligometastatic disease is based solely on imaging findings. A small number of metastases on imaging could represent different clinical scenarios, which are associated with different prognoses and might require different treatment strategies. 20 international experts including 19 members of the European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer OligoCare project developed a comprehensive system for characterisation and classification of oligometastatic disease. We first did a systematic review of the literature to identify inclusion and exclusion criteria of prospective interventional oligometastatic disease clinical trials. Next, we used a Delphi consensus process to select a total of 17 oligometastatic disease characterisation factors that should be assessed in all patients treated with radical local therapy for oligometastatic disease, both within and outside of clinical trials. Using a second round of the Delphi method, we established a decision tree for oligometastatic disease classification together with a nomenclature. We agreed oligometastatic disease as the overall umbrella term. A history of polymetastatic disease before diagnosis of oligometastatic disease was used as the criterion to differentiate between induced oligometastatic disease (previous history of polymetastatic disease) and genuine oligometastatic disease (no history of polymetastatic disease). We further subclassified genuine oligometastatic disease into repeat oligometastatic disease (previous history of oligometastatic disease) and de-novo oligometastatic disease (first time diagnosis of oligometastatic disease). In de-novo oligometastatic disease, we differentiated between synchronous and metachronous oligometastatic disease. We did a final subclassification into oligorecurrence, oligoprogression, and oligopersistence, considering whether oligometastatic disease is diagnosed during a treatment-free interval or during active systemic therapy and whether or not an oligometastatic lesion is progressing on current imaging. This oligometastatic disease classification and nomenclature needs to be prospectively evaluated by the OligoCare study
Indications of strong adaptive population genetic structure in albacore tuna (Thunnus alalunga) in the southwest and central Pacific Ocean
Albacore tuna (Thunnus alalunga) has a distinctly complex life history in which juveniles and adults separate geographically but at times inhabit the same spaces sequentially. The species also migrates long distances and presumably experiences varied regimes of physical stress over a lifetime. There are, therefore, many opportunities for population structure to arise based on stochastic differences or environmental factors that promote local adaptation. However, with the extent of mobility consistently demonstrated by tagged individuals, there is also a strong argument for panmixia within an ocean basin. It is important to confirm such assumptions from a population genetics standpoint for this species in particular because albacore is one of the principal market tuna species that sustains massive global fisheries and yet is also a slowâgrowing temperate tuna. Consequently, we used 1,837 neutral SNP loci and 89 loci under potential selection to analyze population genetic structure among five sample groups collected from the western and central South Pacific. We found no evidence to challenge panmixia at neutral loci, but strong indications of structuring at adaptive loci. One population sample, from French Polynesia in 2004, was particularly differentiated. Unfortunately, the current study cannot infer whether the divergence is geographic or temporal, or possibly caused by sample distribution. We encourage future studies to include potentially adaptive loci and to continue fine scale observations within an ocean basin, and not to assume genomeâwide panmixia
- âŠ