81 research outputs found

    Fragile DNA Repair Mechanism Reduces Ageing in Multicellular Model

    Get PDF
    DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity, followed by a rapid decline. Furthermore, the time of high functionality increases, and consequently slows down the ageing process, if the DNA repair mechanism itself is vulnerable to DNA damages. Although counterintuitive at first glance, a fragile repair mechanism allows for a faster removal of compromised cells, thus freeing the space for healthy peers. This finding might be a first step toward understanding why a mutation in single DNA repair protein (e.g. Wrn or Blm) is not buffered by other repair proteins and therefore, leads to severe ageing disorders

    CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts

    Get PDF
    CD44 is a marker of tumour-initiating cells and is upregulated in invasive breast carcinoma; however, its role in the cancer progression is unknown. Here, we show that antibody-mediated CD44-targeting in human breast cancer xenografts (HBCx) significantly reduces tumour growth and that this effect is associated to induction of growth-inhibiting factors. Moreover, treatment with this antibody prevents tumour relapse after chemotherapy-induced remission in a basal-like HBCx

    Further phenotypic characterization of the primitive lineage− CD34+CD38−CD90+CD45RA− hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia

    Get PDF
    The most primitive hematopoietic stem cell (HSC)/progenitor cell (PC) population reported to date is characterized as being Lin−CD34+CD38−CD90+CD45R. We have a long-standing interest in comparing the characteristics of hematopoietic progenitor cell populations enriched from normal subjects and patients with chronic myelogenous leukemia (CML). In order to investigate further purification of HSCs and for potential targetable differences between the very primitive normal and CML stem/PCs, we have phenotypically compared the normal and CML Lin−CD34+CD38−CD90+CD45RA− HSC/PC populations. The additional antigens analyzed were HLA-DR, the receptor tyrosine kinases c-kit and Tie2, the interleukin-3 cytokine receptor, CD33 and the activation antigen CD69, the latter of which was recently reported to be selectively elevated in cell lines expressing the Bcr-Abl tyrosine kinase. Notably, we found a strikingly low percentage of cells from the HSC/PC sub-population isolated from CML patients that were found to express the c-kit receptor (<1%) compared with the percentages of HSC/PCs expressing the c-kitR isolated from umbilical cord blood (50%) and mobilized peripheral blood (10%). Surprisingly, Tie2 receptor expression within the HSC/PC subset was extremely low from both normal and CML samples. Using in vivo transplantation studies, we provide evidence that HLA-DR, c-kitR, Tie2 and IL-3R may not be suitable markers for further partitioning of HSCs from the Lin−CD34+CD38−CD90+CD45RA− sub-population

    Tissue resident stem cells: till death do us part

    Get PDF

    Deterministic regulation of hematopoietic stem cell self-renewal and differentiation

    No full text
    Most current theories assume that self-renewal and differentiation of hematolymphoid stem cells (HSCs) is randomly regulated by intrinsic and environmental influences. A direct corollary of these tenets is that self-renewal will continuously generate functionally heterogeneous daughter HSCs. Decisions about self-renewal versus commitment are made by individual, single HSCs and, thus, require examination on the clonal level. We followed the behavior of individual, clonally derived HSCs through long-term, serial repopulation experiments. These studies showed that daughter HSCs derived from individual clones were remarkably similar to each other in the extent and kinetics of repopulation. Moreover, daughter HSCs within a clone showed equivalent contributions to the myeloid or lymphoid lineages. Lineage contribution could be followed because of the discovery of a new subset of HSCs that gave rise stably to skewed ratios of myeloid and lymphoid cells. Overall, the data argue that self-renewal does not contribute to the heterogeneity of the adult HSC compartment. Rather, all HSCs in a clone follow a predetermined fate, consistent with the generation-age hypothesis. By extension, this suggests that the self-renewal and differentiation behavior of HSCs in adult bone marrow is more predetermined than previously thought

    The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets

    No full text
    Hematopoietic stem cells (HSCs) display extensive heterogeneity in their behavior even when isolated as phenotypically homogeneous populations. It is not clear whether this heterogeneity reflects inherently diverse subsets of HSCs or a homogeneous population of HSCs diversified by their response to different external stimuli. To address this, we analyzed 97 individual HSCs in long-term transplantation assays. HSC clones were obtained from unseparated bone marrow (BM) through limiting dilution approaches. Following transplantation into individual hosts, donor-type cells in blood were measured bimonthly and the resulting repopulation kinetics were grouped according to overall shape. Only 16 types of repopulation kinetics were found among the HSC clones even though combinatorially 54 groups were possible. All HSC clones, regardless of their origin, could be assigned to this subset of groups, and the probability of finding new patterns is negligible. Thus, the full repertoire of repopulating HSCs was covered. These data indicate that the HSC compartment consists of a limited number of distinct HSC subsets, each with predictable behavior. Enrichment of HSCs (Lin(–)Rho(–)SP) changes the representation of HSC types by selecting for distinct subsets of HSCs. These data from the steady-state HSC repertoire could provide a basis for the diagnosis of perturbed patterns of HSCs potentially caused by disease or aging

    Predicting clonal self-renewal and extinction of hematopoietic stem cells

    No full text
    A single hematopoietic stem cell (HSC) can generate a clone, consisting of daughter HSCs and differentiated progeny, which can sustain the hematopoietic system of multiple hosts for a long time. At the same time, this massive expansion potential must be restrained to prevent abnormal, leukemic proliferation. We used an interdisciplinary approach, combining transplantation assays with mathematical and computational methods, to systematically analyze the proliferative potential of individual HSCs. We show that all HSC clones examined have an intrinsically limited life span. Daughter HSCs within a clone behaved synchronously in transplantation assays and eventually exhausted at the same time. These results indicate that each HSC is programmed to have a finite life span. This program and the memory of the life span of the mother HSC are inherited by all daughter HSCs. In contrast, there was extensive heterogeneity in life spans between individual HSC clones, ranging from 10 to almost 60 mo. We used model-based machine learning to develop a mathematical model that efficiently predicts the life spans of individual HSC clones on the basis of a few initial measurements of donor type cells in blood. Computer simulations predict that the probability of self-renewal decays with a logistic kinetic over the life span of a normal HSC clone. Other decay functions lead to either graft failure or leukemic proliferation. We propose that dynamical fate probabilities are a crucial condition that leads to self-limiting clonal proliferation

    A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells

    No full text
    Whether hematopoietic stem cells (HSCs) change with aging has been controversial. Previously, we showed that the HSC compartment in young mice consists of distinct subsets, each with predetermined self-renewal and differentiation behavior. Three classes of HSCs can be distinguished based on their differentiation programs: lymphoid biased, balanced, and myeloid biased. We now show that aging causes a marked shift in the representation of these HSC subsets. A clonal analysis of repopulating HSCs demonstrates that lymphoid-biased HSCs are lost and long-lived myeloid-biased HSCs accumulate in the aged. Myeloid-biased HSCs from young and aged sources behave similarly in all aspects tested. This indicates that aging does not change individual HSCs. Rather, aging changes the clonal composition of the HSC compartment. We show further that genetic factors contribute to the age-related changes of the HSC subsets. In comparison with B6 mice, aged D2 mice show a more pronounced shift toward myeloid-biased HSCs with a corresponding reduction in the number of both T- and B-cell precursors. This suggests that low levels of lymphocytes in the blood can be a marker for HSC aging. The loss of lymphoid-biased HSCs may contribute to the impaired immune response to infectious diseases and cancers in the aged
    corecore