301 research outputs found

    THEORY OF NUCLEATION AND CRYSTAL GROWTH OF POLYMERS IN CONCENTRATED SOLUTIONS

    Get PDF
    ABSTRACT The process of crystallization in concentrated solutions depends strongly on the rate of crystallization and the rate of long range diffusion of the polymer chains. If the crystallization proceeds slowly compared to diffusion, this type of crystal nucleus will be formed for which the free energy of nucleation is smallest. By taking into account entropy effects which are characteristic for chain molecules one can show that the crystal with smallest free energy of nucleation is a crystal with almost regular chain folds on the surfaces. The influence of supercooling, concentration and molecular weight on the thickness and growth rate of such crystals is discussed. If the crystallization proceeds rapidly compared to the large range diffusion each part of the chain will crystallize as far as possible at the same place where it is lying in the solution. The nucleation process is not governed by thermodynamics. The type of crystal which is formed depends in this case on the concentration and the order of the chains in solution. A single parameter has to be introduced in the theory: the probability p that a new molecule is incorporated into the crystal. If p is large, crystals with loose loops with comparatively large end-to-end distances will be formed. With decreasing p the case of short regular folds with adjacent reentry is approached. In dilute solutions small values of p can be expected. With increasing concentration p increases, provided that the polymer molecules penetrate each other

    Study of the morphology of semicrystalline poly(ethylene terephthalate) by hydrolysis etching

    Get PDF
    Semicrystalline poly(ethylene terephthalate) was hydrolysed in water at 180°C under elevated pressure and subsequently treated with ethanol, following the etching process first developed by Miyagi and Wunderlich. The weight loss, the wide-angle X-ray scattering and the molecular weight were measured as a function of etching time. It was found that even at the end of the etching process not all the amorphous material could be removed by the hydrolysis treatment. By comparing the obtained results with those derived from an elaborate small-angle X-ray scattering study and with wide-angle X-ray scattering measurements, it was concluded that only those amorphous regions lying outside of the lamellar stacks were removed. Subsequently, the lamellar stacks themselves were attacked. It was also found that at the very beginning of the hydrolysis process additional crystals were formed in the material.Peer reviewe

    Psychiatric, neuropediatric, and neuropsychological symptoms in a case of hypomelanosis of Ito

    Get PDF
    This case report presents a thirteen year-old boy who was diagnosed as having Hypomelanosis of Ito. The developmental history includes severe failure to thrive, and moderate atypical autism as well as diverse clinical and neuropsychological symptoms are present. The pattern of neuropsychological functioning, which can be partially related to the neurophysiological findings, is discussed within the context of existing neuropsychological theories about autistic disorder

    Ein neues, unkompliziertes Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische

    Get PDF
    Ein neues Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische mit Hilfe solvatochromer Farbstoffe wird beschrieben. Die Analyse erfolgt durch einfache UV/VIS-Absorptionsmessung und ist unter Verwendung einer Zwei-Parameter-Gleichung ein exakter Schnelltest

    Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones

    Get PDF
    BACKGROUND: Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. RESULTS: Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. CONCLUSIONS: Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include

    Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison.

    Get PDF
    Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs
    corecore