732 research outputs found
Spectroscopy And Green Up-Conversion Laser-Emission Of Er(3+)-Doped Crystals At Room-Temperature
The spectroscopic parameters of Er3+-doped crystals were determined with regard to the upconversion laser parameters of the green transition S-4(3/2) -- \u3e I-4(15/2), The influence of excited-state absorption on this laser channel was determined. Furthermore, upconversion pump mechanisms using ground-state and excited-state absorption around 810 and 970 nm were investigated by direct measurements of excited-state absorption. The spectroscopic results confirm the pulsed room-temperature laser experiments on the S-4(3/2) -- \u3e I-5(5/2) transition. The lasers based on Er:LiYF4, Er:Y3Al5O12, and Er:Lu3Al5O12 were directly excited into the upper laser level by an excimer laser pumped dye laser in the blue spectral range. In Er:LiYF4, Er:KYF4, and Er:Y3Al5O12, laser action was achieved with two-step upconversion pumping by a Ti:sapphire laser and a krypton ion laser. In the case of the fluorides, the additional pumping with the krypton ion laser was not necessary. The laser emission wavelengths were 551 nm for Er:LiYF4, 561 nm for Er:Y3Al5012 and Er:Lu3Al5O12, and 562 nm for Er:KYF4. In addition, green quasi-cw laser emission of Er:LiYF4 pumped with an argon-ion laser was realized at room temperature
540 mW of blue output power at 425 nm generated by intracavity frequency doubling an upconversion-pumped Er3+: YLiF4 laser
We report efficient room-temperature continuous-wave intracavity frequency doubling of an upconversion-pumped Er(1%):YLiF4 laser at 850 nm. A titanium-sapphire laser was used for excitation of the S-4(3/2)-- \u3e I-4(13/2) transition in erbium. The maximum laser output power at 850 nm was 1200 mW. Intracavity frequency doubling the fundamental wave utilizing lithium triborate as nonlinear crystal yielded a maximum second-harmonic output power of 540 mW at 425 nm
Exact Solution of an Evolutionary Model without Ageing
We introduce an age-structured asexual population model containing all the
relevant features of evolutionary ageing theories. Beneficial as well as
deleterious mutations, heredity and arbitrary fecundity are present and managed
by natural selection. An exact solution without ageing is found. We show that
fertility is associated with generalized forms of the Fibonacci sequence, while
mutations and natural selection are merged into an integral equation which is
solved by Fourier series. Average survival probabilities and Malthusian growth
exponents are calculated indicating that the system may exhibit mutational
meltdown. The relevance of the model in the context of fissile reproduction
groups as many protozoa and coelenterates is discussed.Comment: LaTeX file, 15 pages, 2 ps figures, to appear in Phys. Rev.
Monte Carlo simulation of subsurface ordering kinetics in an fcc-alloy model
Within the atom-vacancy exchange mechanism in a nearest-neighbor interaction
model we investigate the kinetics of surface-induced ordering processes close
to the (001) surface of an fcc A_3B-alloy. After a sudden quench into the
ordered phase with a final temperature above the ordering spinodal, T_f > T_sp,
the early time kinetics is dominated by a segregation front which propagates
into the bulk with nearly constant velocity. Below the spinodal, T_f < T_sp,
motion of the segregation wave reflects a coarsening process which appears to
be slower than predicted by the Lifschitz-Allen-Cahn law. In addition, in the
front-penetrated region lateral growth differs distinctly from perpendicular
growth, as a result of the special structure of antiphase boundaries near the
surface. Our results are compared with recent experiments on the subsurface
ordering kinetics at Cu_3Au (001).Comment: 10 pages, 9 figures, submitted to Phys. Rev. B, in prin
500,000 Years of Environmental History in Eastern Anatolia: The PALEOVAN Drilling Project
International Continental Scientific Drilling Program
(ICDP) drilled a complete succession of the lacustrine sediment
sequence deposited during the last ~500,000 years in
Lake Van, Eastern Anatolia (Turkey). Based on a detailed
seismic site survey, two sites at a water depth of up to 360 m
were drilled in summer 2010, and cores were retrieved from
sub-lake-floor depths of 140 m (Northern Basin) and 220 m
(Ahlat Ridge). To obtain a complete sedimentary section, the
two sites were multiple-cored in order to investigate the paleoclimate
history of a sensitive semi-arid region between the
Black, Caspian, and Mediterranean seas. Further scientific
goals of the PALEOVAN project are the reconstruction of
earthquake activity, as well as the temporal, spatial, and
compositional evolution of volcanism as reflected in the deposition
of tephra layers. The sediments host organic matter
from different sources and hence composition, which will be
unravelled using biomarkers. Pathways for migration of continental
and mantle-derived noble gases will be analyzed in
pore waters. Preliminary 40Ar/39Ar single crystal dating of
tephra layers and pollen analyses suggest that the Ahlat
Ridge record encompasses more than half a million years of
paleoclimate and volcanic/geodynamic history, providing
the longest continental record in the entire Near East to
date
Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS
A method has been developed for the direct and simultaneous multielement determination of Cu, Zn, Sn, and Pb in soil and sediment samples using femtosecond laser ablation inductively coupled plasma mass spectrometry (fs-LA-ICPMS) in combination with isotope dilution mass spectrometry (IDMS). The in-cell isotope dilution fs-LA-ICPMS method proposed in this work was based on the quasi-simultaneous ablation of the natural abundance sample and the isotopically enriched solid spike, which was performed using a high repetition rate laser and a fast scanning beam device in a combined manner. Both the sample preparation procedure and the total analysis time have been drastically reduced, in comparison with previous approaches, since a unique multielement isotopically enriched solid spike was employed to analyze different powdered samples. Numerous experimental parameters were carefully selected (e.g., carrier gas flow rate, inlet diameter of the ablation cell, sample translation speed, scanner speed, etc.) in order to ensure the complete mixing between the sample and the solid spike aerosols. The proposed in-cell fs-LA-ICP-IDMS method was tested for the analysis of two soil (CRM 142R, GBW-07405) and two sediment (PACS-2, IAEA-405) reference materials, and the analysis of Cu, Zn, Sn, and Pb yielded good agreement of usually not more than 10% deviation from the certified values and precisions of less than 15% relative standard deviation. Furthermore, the concentrations were in agreement not only with the certified values but also with those obtained by ICP-IDMS after the microwave-assisted digestion of the solid samples, demonstrating therefore that in-cell fs-LA-ICP-IDMS opens the possibility for accurate and precise determinations of trace elements in powdered samples reducing the total sample preparation time to less than 5 min. Additionally, scanning electron microscope measurements showed that the aerosol generated by in-cell fs-LA-ICP-IDMS predominantly consisted of linear agglomerates of small particles (in the order of few tens of nanometers) and a few large spherical particles with diameters below 225 nm
Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis
Background: Interactions between mononuclear cells and activated pancreatic myofibroblasts (pancreatic stellate cells; PSC) may contribute to inflammation and fibrosis in chronic pancreatitis (CP). Methods: Markers of fibrosis and inflammation were concomitantly analysed by immunohistochemistry in chronic pancreatitis tissues. In vitro, PSC were stimulated with TNFalpha and LPS. Primary human blood mononuclear cells (PBMC) and PSC were cocultured, followed by analysis of cytokines and extracellular matrix (ECM) proteins. PBMC were derived from healthy donors and CP and septic shock patients. Results: In areas of mononuclear cell infiltration in chronic pancreatitis tissues, there was decreased immunoreactivity for collagen1 and fibronectin, in contrast to areas with sparse mononuclear cells, although PSC were detectable in both areas. LPS and TNFalpha induced collagen1 and fibronectin levels as well as the matrix degradation enzyme MMP-1. Coculture experiments with PSC and PBMC revealed increased fibronectin secretion induced by PBMC. In addition, donor and CP PBMC significantly induced an increase in IL-6, MCP-1 and TGFbeta levels under coculture conditions. Determination of the source of cytokines and ECM proteins by mRNA expression analysis confirmed PSC as major contributors of ECM production. The increase in cytokine expression was PBMC- and also PSC-derived. Conclusion: Mononuclear cells modulate the activity of pancreatic stellate cells, which may in turn promote fibrosis and inflammation
Determination of “borderline resectable” pancreatic cancer – A global assessment of 30 shades of grey
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis. Accurate preoperative assessment using computed tomography (CT) to determine resectability is crucial in ensuring patients are offered the most appropriate therapeutic strategy. Despite the use of classification guidelines, any interobserver variability between reviewing surgeons and radiologists may confound decisions influencing patient treatment pathways. Methods: In this multicentre observational study, an international group of 96 clinicians (42 hepatopancreatobiliary surgeons and 54 radiologists) were surveyed and asked to report 30 pancreatic CT scans of pancreatic cancer deemed borderline at respective multidisciplinary meetings (MDM). The degree of interobserver agreement in resectability among radiologists and surgeons was assessed and subgroup regression analysis was performed. Results: Interobserver variability between reviewers was high with no unanimous agreement. Overall interobserver agreement was fair with a kappa value of 0.32 with a higher rate of agreement among radiologists over surgeons. Conclusion: Interobserver variability among radiologists and surgeons globally is high, calling into question the consistency of clinical decision making for patients with PDAC and suggesting that central review may be required for studies of neoadjuvant or adjuvant approaches in future as well as ongoing quality control initiatives, even amongst experts in the field
Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing
The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study's observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies
- …