313 research outputs found

    Great Expectations: Voluntary Sports Clubs and Their Role in Delivering National Policy for English Sport

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright International Society for Third-Sector Research and The Johns Hopkins University. DOI: 10.1007/s11266-009-9095-yVoluntary sports clubs (VSCs) account for about a quarter of all volunteering in England. The volunteers work in a mutual aid, self-production, self-consumption system whose main purpose is identifying and nurturing high-level performers. But the new HMG/Sport England strategies leading to London 2012 expects volunteers to make a major contribution to sustaining and extending participation. The study utilized six focus group sessions with a total of 36 officials and members of 36 clubs across the six counties of Eastern England to assess whether and to what extent government policy objectives can be delivered through the voluntary sector. The study focused on the perceptions and attitudes of club members about being expected to serve public policy and the current pressures they and their clubs face. The results lead the authors to question the appropriateness, sensitivity, and feasibility of current sport policy, particularly the emphasis on VSCs as policy implementers.Peer reviewe

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Energetics and Vibrational States for Hydrogen on Pt(111)

    Get PDF
    We present a combination of theoretical calculations and experiments for the low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111) surface. The vibrational band states are calculated based on the full three-dimensional adiabatic potential energy surface obtained from first principles calculations. For coverages less than three quarters of a monolayer, the observed experimental high-resolution electron peaks at 31 and 68meV are in excellent agreement with the theoretical transitions between selected bands. Our results convincingly demonstrate the need to go beyond the local harmonic oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200

    A Quintuple Star System Containing Two Eclipsing Binaries

    Get PDF
    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 arcsec on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09 arcsec, while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The ‘A’ binary is circular with a 5.1-d period, while the ‘B’ binary is eccentric with a 13.1-d period. The γ velocities of the A and B binaries are different by ∼10 km s^(−1). That, coupled with their resolved projected separation of 0.09 arcsec, indicates that the orbital period and separation of the ‘C’ binary (consisting of A orbiting B) are ≃65 yr and ≃25 au, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e. 212651213) has an RV and proper motion that differ from that of 212651234 by only ∼1.4 km s^(−1) and ∼3 mas yr^(−1). This set of similar space velocities in three dimensions strongly implies that these two objects are also physically bound, making this at least a quintuple star system

    Ballistic matter waves with angular momentum: Exact solutions and applications

    Full text link
    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schroedinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. Our theory directly applies to p-wave photodetachment in an electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and semiclassical theor

    A seismic and gravitationally bound double star observed by Kepler

    Get PDF
    Context. Solar-like oscillations have been observed by Kepler and CoRoT in many solar-type stars, thereby providing a way to probe stars using asteroseismology. Aims. The derivation of stellar parameters has usually been done with single stars. The aim of the paper is to derive the stellar parameters of a double-star system (HIP 93511), for which an interferometric orbit has been observed along with asteroseismic measurements. Methods. We used a time series of nearly two years of data for the double star to detect the two oscillation-mode envelopes that appear in the power spectrum. Using a new scaling relation based on luminosity, we derived the radius and mass of each star. We derived the age of each star using two proxies: one based upon the large frequency separation and a new one based upon the small frequency separation. Using stellar modelling, the mode frequencies allowed us to derive the radius, the mass, and the age of each component. In addition, speckle interferometry performed since 2006 has enabled us to recover the orbit of the system and the total mass of the system. Results. From the determination of the orbit, the total mass of the system is 2.34_(-0.33)^(+0.45) M_⊙. The total seismic mass using scaling relations is 2.47 ± 0.07 M_⊙. The seismic age derived using the new proxy based upon the small frequency separation is 3.5 ± 0.3 Gyr. Based on stellar modelling, the mean common age of the system is 2.7–3.9 Gyr. The mean total seismic mass of the system is 2.34–2.53 M_⊙  consistent with what we determined independently with the orbit. The stellar models provide the mean radius, mass, and age of the stars as R_A = 1.82−1.87R_⊙, M_A = 1.25−1.39 M_⊙, Age_A = 2.6–3.5 Gyr; R_B = 1.22−1.25 R_⊙, M_B = 1.08−1.14 M_⊙, Age_B = 3.35–4.21 Gyr. The models provide two sets of values for Star A: [1.25–1.27] M_⊙ and [1.34–1.39] M_⊙. We detect a convective core in Star A, while Star B does not have any. For the metallicity of the binary system of Z ≈ 0.02, we set the limit between stars having a convective core in the range [1.14–1.25] M_⊙

    Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller

    Full text link
    In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 15 June 2010 the Kepler Mission released data from the first quarter of observations. At the time of this publication, 706 stars from this first data set have exoplanet candidates with sizes from as small as that of the Earth to larger than that of Jupiter. Here we give the identity and characteristics of 306 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in February 2011. Over half the candidates on the released list have radii less than half that of Jupiter. The released stars include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all figures. Slight changes to planet frequencies in result
    corecore