401 research outputs found
Incorporating learning goals about modeling into an upper-division physics laboratory experiment
Implementing a laboratory activity involves a complex interplay among
learning goals, available resources, feedback about the existing course, best
practices for teaching, and an overall philosophy about teaching labs. Building
on our previous work, which described a process of transforming an entire lab
course, we now turn our attention to how an individual lab activity on the
polarization of light was redesigned to include a renewed emphasis on one broad
learning goal: modeling. By using this common optics lab as a concrete case
study of a broadly applicable approach, we highlight many aspects of the
activity development and show how modeling was used to integrate sophisticated
conceptual and quantitative reasoning into the experimental process through the
various aspects of modeling: constructing models, making predictions,
interpreting data, comparing measurements with predictions, and refining
models. One significant outcome is a natural way to integrate an analysis and
discussion of systematic error into a lab activity.Comment: 19 pages, 2 figures, 1 table, Submitted to Am. J. Phy
Development and results from a survey on students views of experiments in lab classes and research
The Colorado Learning Attitudes about Science Survey for Experimental Physics
(E-CLASS) was developed as a broadly applicable assessment tool for
undergraduate physics lab courses. At the beginning and end of the semester,
the E-CLASS assesses students views about their strategies, habits of mind, and
attitudes when doing experiments in lab classes. Students also reflect on how
those same strategies, habits-of-mind, and attitudes are practiced by
professional researchers. Finally, at the end of the semester, students reflect
on how their own course valued those practices in terms of earning a good
grade. In response to frequent calls to transform laboratory curricula to more
closely align it with the skills and abilities needed for professional
research, the E-CLASS is a tool to assess students' perceptions of the gap
between classroom laboratory instruction and professional research. The E-CLASS
has been validated and administered in all levels of undergraduate physics
classes. To aid in its use as a formative assessment tool, E-CLASS provides all
participating instructors with a detailed feedback report. Example figures and
analysis from the report are presented to demonstrate the capabilities of the
E-CLASS. The E-CLASS is actively administered through an online interface and
all interested instructors are invited to administer the E-CLASS their own
classes and will be provided with a summary of results at the end of the
semester
Development and Validation of the Colorado Learning Attitudes about Science Survey for Experimental Physics
As part of a comprehensive effort to transform our undergraduate physics
laboratories and evaluate the impacts of these efforts, we have developed the
Colorado Learning Attitudes about Science Survey for Experimental Physics
(E-CLASS). The E-CLASS assesses the changes in students' attitudes about a
variety of scientific laboratory practices before and after a lab course and
compares attitudes with perceptions of the course grading requirements and
laboratory practices. The E-CLASS is designed to give researchers insight into
students' attitudes and also to provide actionable evidence to instructors
looking for feedback on their courses. We present the development, validation,
and preliminary results from the initial implementation of the survey in three
undergraduate physics lab courses.Comment: 8 pages, 4 figures, 1 table, submitted to 2012 PERC Proceeding
An epistemology and expectations survey about experimental physics: Development and initial results
In response to national calls to better align physics laboratory courses with
the way physicists engage in research, we have developed an epistemology and
expectations survey to assess how students perceive the nature of physics
experiments in the contexts of laboratory courses and the professional research
laboratory. The Colorado Learning Attitudes about Science Survey for
Experimental Physics (E-CLASS) evaluates students' epistemology at the
beginning and end of a semester. Students respond to paired questions about how
they personally perceive doing experiments in laboratory courses and how they
perceive an experimental physicist might respond regarding their research.
Also, at the end of the semester, the E-CLASS assesses a third dimension of
laboratory instruction, students' reflections on their course's expectations
for earning a good grade. By basing survey statements on widely embraced
learning goals and common critiques of teaching labs, the E-CLASS serves as an
assessment tool for lab courses across the undergraduate curriculum and as a
tool for physics education research. We present the development, evidence of
validation, and initial formative assessment results from a sample that
includes 45 classes at 20 institutions. We also discuss feedback from
instructors and reflect on the challenges of large-scale online administration
and distribution of results.Comment: 31 pages, 9 figures, 3 tables, submitted to Phys. Rev. - PE
Cavity optomechanics with Si3N4 membranes at cryogenic temperatures
We describe a cryogenic cavity-optomechanical system that combines Si3N4
membranes with a mechanically-rigid Fabry-Perot cavity. The extremely high
quality-factor frequency products of the membranes allow us to cool a MHz
mechanical mode to a phonon occupation of less than 10, starting at a bath
temperature of 5 kelvin. We show that even at cold temperatures
thermally-occupied mechanical modes of the cavity elements can be a limitation,
and we discuss methods to reduce these effects sufficiently to achieve ground
state cooling. This promising new platform should have versatile uses for
hybrid devices and searches for radiation pressure shot noise.Comment: 19 pages, 5 figures, submitted to New Journal of Physic
Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System
A major goal in optomechanics is to observe and control quantum behavior in a
system consisting of a mechanical resonator coupled to an optical cavity. Work
towards this goal has focused on increasing the strength of the coupling
between the mechanical and optical degrees of freedom; however, the form of
this coupling is crucial in determining which phenomena can be observed in such
a system. Here we demonstrate that avoided crossings in the spectrum of an
optical cavity containing a flexible dielectric membrane allow us to realize
several different forms of the optomechanical coupling. These include cavity
detunings that are (to lowest order) linear, quadratic, or quartic in the
membrane's displacement, and a cavity finesse that is linear in (or independent
of) the membrane's displacement. All these couplings are realized in a single
device with extremely low optical loss and can be tuned over a wide range in
situ; in particular, we find that the quadratic coupling can be increased three
orders of magnitude beyond previous devices. As a result of these advances, the
device presented here should be capable of demonstrating the quantization of
the membrane's mechanical energy.Comment: 12 pages, 4 figures, 1 tabl
Suppression of extraneous thermal noise in cavity optomechanics
Extraneous thermal motion can limit displacement sensitivity and radiation
pressure effects, such as optical cooling, in a cavity-optomechanical system.
Here we present an active noise suppression scheme and its experimental
implementation. The main challenge is to selectively sense and suppress
extraneous thermal noise without affecting motion of the oscillator. Our
solution is to monitor two modes of the optical cavity, each with different
sensitivity to the oscillator's motion but similar sensitivity to the
extraneous thermal motion. This information is used to imprint "anti-noise"
onto the frequency of the incident laser field. In our system, based on a
nano-mechanical membrane coupled to a Fabry-P\'{e}rot cavity, simulation and
experiment demonstrate that extraneous thermal noise can be selectively
suppressed and that the associated limit on optical cooling can be reduced.Comment: 27 pages, 14 figure
Slot-mode-coupled optomechanical crystals
We present a design methodology and analysis of a cavity optomechanical
system in which a localized GHz frequency mechanical mode of a nanobeam
resonator is evanescently coupled to a high quality factor (Q>10^6) optical
mode of a separate nanobeam optical cavity. Using separate nanobeams provides
flexibility, enabling the independent design and optimization of the optics and
mechanics of the system. In addition, the small gap (approx. 25 nm) between the
two resonators gives rise to a slot mode effect that enables a large zero-point
optomechanical coupling strength to be achieved, with g/2pi > 300 kHz in a
Si3N4 system at 980 nm and g/2pi approx. 900 kHz in a Si system at 1550 nm. The
fact that large coupling strengths to GHz mechanical oscillators can be
achieved in SiN is important, as this material has a broad optical transparency
window, which allows operation throughout the visible and near-infrared. As an
application of this platform, we consider wide-band optical frequency
conversion between 1300 nm and 980 nm, using two optical nanobeam cavities
coupled on either side to the breathing mode of a mechanical nanobeam
resonator
Radiation-pressure self-cooling of a micromirror in a cryogenic environment
We demonstrate radiation-pressure cavity-cooling of a mechanical mode of a
micromirror starting from cryogenic temperatures. To achieve that, a
high-finesse Fabry-Perot cavity (F\approx 2200) was actively stabilized inside
a continuous-flow 4He cryostat. We observed optical cooling of the fundamental
mode of a 50mu x 50 mu x 5.4 mu singly-clamped micromirror at \omega_m=3.5 MHz
from 35 K to approx. 290 mK. This corresponds to a thermal occupation factor of
\approx 1x10^4. The cooling performance is only limited by the mechanical
quality and by the optical finesse of the system. Heating effects, e.g. due to
absorption of photons in the micromirror, could not be observed. These results
represent a next step towards cavity-cooling a mechanical oscillator into its
quantum ground state
From Predicting Solar Activity to Forecasting Space Weather: Practical Examples of Research-to-Operations and Operations-to-Research
The successful transition of research to operations (R2O) and operations to
research (O2R) requires, above all, interaction between the two communities. We
explore the role that close interaction and ongoing communication played in the
successful fielding of three separate developments: an observation platform, a
numerical model, and a visualization and specification tool. Additionally, we
will examine how these three pieces came together to revolutionize
interplanetary coronal mass ejection (ICME) arrival forecasts. A discussion of
the importance of education and training in ensuring a positive outcome from
R2O activity follows. We describe efforts by the meteorological community to
make research results more accessible to forecasters and the applicability of
these efforts to the transfer of space-weather research.We end with a
forecaster "wish list" for R2O transitions. Ongoing, two-way communication
between the research and operations communities is the thread connecting it
all.Comment: 18 pages, 3 figures, Solar Physics in pres
- …
