1,508 research outputs found

    Low Carbon Abundance in Type Ia Supernovae

    Full text link
    We investigate the quantity and composition of unburned material in the outer layers of three normal Type Ia supernovae (SNe Ia): 2000dn, 2002cr and 20 04bw. Pristine matter from a white dwarf progenitor is expected to be a mixture of oxygen and carbon in approximately equal abundance. Using near-infrared (NIR, 0.7-2.5 microns) spectra, we find that oxygen is abundant while carbon is severely depleted with low upper limits in the outer third of the ejected mass. Strong features from the OI line at rest wavelength = 0.7773 microns are observed through a wide range of expansion velocities approx. 9,000 - 18,000 km/s. This large velocity domain corresponds to a physical region of the supernova with a large radial depth. We show that the ionization of C and O will be substantially the same in this region. CI lines in the NIR are expected to be 7-50 times stronger than those from OI but there is only marginal evidence of CI in the spectra and none of CII. We deduce that for these three normal SNe Ia, oxygen is more abundant than carbon by factors of 100 - 1,000. MgII is also detected in a velocity range similar to that of OI. The presence of O and Mg combined with the absence of C indicates that for these SNe Ia, nuclear burning has reached all but the extreme outer layers; any unburned material must have expansion velocities greater than 18,000 km/s. This result favors deflagration to detonation transition (DD) models over pure deflagration models for SNe Ia.Comment: accepted for publication in Ap

    Regular black holes with flux tube core

    Full text link
    We consider a class of black holes for which the area of the two-dimensional spatial cross-section has a minimum on the horizon with respect to a quasiglobal (Krusckal-like) coordinate. If the horizon is regular, one can generate a tubelike counterpart of such a metric and smoothly glue it to a black hole region. The resulting composite space-time is globally regular, so all potential singuilarities under the horizon of the original metrics are removed. Such a space-time represents a black hole without an apparent horizon. It is essential that the matter should be non-vacuum in the outer region but vacuumlike in the inner one. As an example we consider the noninteracting mixture of vacuum fluid and matter with a linear equation of state and scalar phantom fields. This approach is extended to distorted metrics, with the requirement of spherical symmetry relaxed.Comment: 15 pages. 2 references adde

    Black Holes in Modified Gravity (MOG)

    Get PDF
    The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass MM with two horizons. The strength of the gravitational constant is G=GN(1+α)G=G_N(1+\alpha) where α\alpha is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass MM, the parameter α\alpha and the spin angular momentum J=MaJ=Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published version in European Physics Journal

    Letters and records of the dissenting congregations: David Crosley, Cripplegate and Baptist Church life

    No full text
    The original publication is available at www.springerlink.comInternational audienceThis chapter examines the status and function of letters in manuscript records of dissenting Churches of the post-Toleration years, concentrating on the correspondence of the Baptist Church of Cripplegate. The letters are placed in the context of controversies about Church government and discipline and the rhetoric used during the scandal caused by the excommunication of its Northern minister David Crosley for drinking, lying and adultery is assessed. In doing so, the chapter pays particular attention to the epistolary exchanges between metropolitan and provincial congregations and to what they reveal about conceptions of the Baptist ministry

    Molecular spintronics: Coherent spin transfer in coupled quantum dots

    Full text link
    Time-resolved Faraday rotation has recently demonstrated coherent transfer of electron spin between quantum dots coupled by conjugated molecules. Using a transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the Faraday rotation signal as a function of the probe frequency in a pump-probe setup using neutral quantum dots. Additionally, we study the signal of one spin-polarized excess electron in the coupled dots. We show that, in both cases, the Faraday rotation angle is determined by the spin transfer probabilities and the Heisenberg spin exchange energy. By comparison of our results with experimental data, we find that the transfer matrix element for electrons in the conduction band is of order 0.08 eV and the spin transfer probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change

    Silicon carbide absorption features: dust formation in the outflows of extreme carbon stars

    Full text link
    Infrared carbon stars without visible counterparts are generally known as extreme carbon stars. We have selected a subset of these stars with absorption features in the 10-13 μ\mum range, which has been tentatively attributed to silicon carbide (SiC). We add three new objects meeting these criterion to the seven previously known, bringing our total sample to ten sources. We also present the result of radiative transfer modeling for these stars, comparing these results to those of previous studies. In order to constrain model parameters, we use published mass-loss rates, expansion velocities and theoretical dust condensation models to determine the dust condensation temperature. These show that the inner dust temperatures of the dust shells for these sources are significantly higher than previously assumed. This also implies that the dominant dust species should be graphite instead of amorphous carbon. In combination with the higher condensation temperature we show that this results in a much higher acceleration of the dust grains than would be expected from previous work. Our model results suggest that the very optically thick stage of evolution does not coincide with the timescales for the superwind, but rather, that this is a very short-lived phase. Additionally, we compare model and observational parameters in an attempt to find any correlations. Finally, we show that the spectrum of one source, IRAS 17534-3030, strongly implies that the 10-13 μ\mum feature is due to a solid state rather than a molecular species.Comment: 13 Figure

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Black Holes in Quasi-topological Gravity

    Full text link
    We construct a new gravitational action which includes cubic curvature interactions and which provides a useful toy model for the holographic study of a three parameter family of four- and higher-dimensional CFT's. We also investigate the black hole solutions of this new gravity theory. Further we examine the equations of motion of quasi-topological gravity. While the full equations in a general background are fourth-order in derivatives, we show that the linearized equations describing gravitons propagating in the AdS vacua match precisely the second-order equations of Einstein gravity.Comment: 33 pages, 4 figures; two references adde

    Transgressing the moral economy: Wheelerism and management of the nationalised coal industry in Scotland

    Get PDF
    This article illuminates the links between managerial style and political economy in post-1945 Britain, and explores the origins of the 1984–1985 miners' strike, by examining in longer historical context the abrasive attitudes and policies of Albert Wheeler, Scottish Area Director of the National Coal Board (NCB). Wheeler built on an earlier emphasis on production and economic criteria, and his micro-management reflected pre-existing centralising tendencies in the industries. But he was innovative in one crucial aspect, transgressing the moral economy of the Scottish coalfield, which emphasised the value of economic security and changes by joint industrial agreement

    Field Theoretical Quantum Effects on the Kerr Geometry

    Get PDF
    We study quantum aspects of the Einstein gravity with one time-like and one space-like Killing vector commuting with each other. The theory is formulated as a \coset nonlinear σ\sigma-model coupled to gravity. The quantum analysis of the nonlinear σ\sigma-model part, which includes all the dynamical degrees of freedom, can be carried out in a parallel way to ordinary nonlinear σ\sigma-models in spite of the existence of an unusual coupling. This means that we can investigate consistently the quantum properties of the Einstein gravity, though we are limited to the fluctuations depending only on two coordinates. We find the forms of the beta functions to all orders up to numerical coefficients. Finally we consider the quantum effects of the renormalization on the Kerr black hole as an example. It turns out that the asymptotically flat region remains intact and stable, while, in a certain approximation, it is shown that the inner geometry changes considerably however small the quantum effects may be.Comment: 16 pages, LaTeX. The hep-th number added on the cover, and minor typos correcte
    corecore