653 research outputs found
Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip
We theoretically study the coupling of Bose-Einstein condensed atoms to the
mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is
an experimentally viable hybrid quantum system which allows one to explore the
interface of quantum optics and condensed matter physics. We propose an
experiment where easily detectable atomic spin-flips are induced by the
cantilever motion. This can be used to probe thermal oscillations of the
cantilever with the atoms. At low cantilever temperatures, as realized in
recent experiments, the backaction of the atoms onto the cantilever is
significant and the system represents a mechanical analog of cavity quantum
electrodynamics. With high but realistic cantilever quality factors, the strong
coupling regime can be reached, either with single atoms or collectively with
Bose-Einstein condensates. We discuss an implementation on an atom chip.Comment: published version (5 pages, 3 figures
Strong coupling of a mechanical oscillator and a single atom
We propose and analyze a setup to achieve strong coupling between a single
trapped atom and a mechanical oscillator. The interaction between the motion of
the atom and the mechanical oscillator is mediated by a quantized light field
in a laser driven high-finesse cavity. In particular, we show that high
fidelity transfer of quantum states between the atom and the mechanical
oscillator is in reach for existing or near future experimental parameters. Our
setup provides the basic toolbox for coherent manipulation, preparation and
measurement of micro- and nanomechanical oscillators via the tools of atomic
physics.Comment: 4 pages, 2 figures, minro changes, accepted by PR
Optimized production of a cesium Bose-Einstein condensate
We report on the optimized production of a Bose-Einstein condensate of cesium
atoms using an optical trapping approach. Based on an improved trap loading and
evaporation scheme we obtain more than atoms in the condensed phase. To
test the tunability of the interaction in the condensate we study the expansion
of the condensate as a function of scattering length. We further excite strong
oscillations of the trapped condensate by rapidly varying the interaction
strength.Comment: 9 pages, 7 figures, submitted to Appl. Phys.
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
Coherent manipulation of atomic qubits in optical micropotentials
We experimentally demonstrate the coherent manipulation of atomic states in
far-detuned dipole traps and registers of dipole traps based on two-dimensional
arrays of microlenses. By applying Rabi, Ramsey, and spin-echo techniques, we
systematically investigate the dephasing mechanisms and determine the coherence
time. Simultaneous Ramsey measurements in up to 16 dipole traps are performed
and proves the scalability of our approach. This represents an important step
in the application of scalable registers of atomic qubits for quantum
information processing. In addition, this system can serve as the basis for
novel atomic clocks making use of the parallel operation of a large number of
individual clocks each remaining separately addressable.Comment: to be published in Appl. Phys.
Single-atom cavity QED and optomicromechanics
In a recent publication [K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, Phys. Rev. Lett. 103, 063005 (2009)] we have shown the possibility to achieve strong coupling of the quantized motion of a micron-sized mechanical system to the motion of a single trapped atom. In the proposed setup the coherent coupling between a SiN membrane and a single atom is mediated by the field of a high finesse cavity and can be much larger than the relevant decoherence rates. This makes the well-developed tools of cavity quantum electrodynamics with single atoms available in the realm of cavity optomechanics. In this article we elaborate on this scheme and provide detailed derivations and technical comments. Moreover, we give numerical as well as analytical results for a number of possible applications for transfer of squeezed or Fock states from atom to membrane as well as entanglement generation, taking full account of dissipation. In the limit of strong-coupling the preparation and verification of nonclassical states of a mesoscopic mechanical system is within reach
Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia
Borderline personality disorder (BOR) is determined by environmental and
genetic factors, and characterized by affective instability and impulsivity,
diagnostic symptoms also observed in manic phases of bipolar disorder (BIP).
Up to 20% of BIP patients show comorbidity with BOR. This report describes the
first case–control genome-wide association study (GWAS) of BOR, performed in
one of the largest BOR patient samples worldwide. The focus of our analysis
was (i) to detect genes and gene sets involved in BOR and (ii) to investigate
the genetic overlap with BIP. As there is considerable genetic overlap between
BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of
BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD.
GWAS, gene-based tests and gene-set analyses were performed in 998 BOR
patients and 1545 controls. Linkage disequilibrium score regression was used
to detect the genetic overlap between BOR and these disorders. Single marker
analysis revealed no significant association after correction for multiple
testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 ×
10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant
finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate).
Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The
most notable finding of the present study was the genetic overlap of BOR with
BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57
[P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR
overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined
to transdiagnostic clinical symptoms should be examined in future studies
Hybrid Mechanical Systems
We discuss hybrid systems in which a mechanical oscillator is coupled to
another (microscopic) quantum system, such as trapped atoms or ions,
solid-state spin qubits, or superconducting devices. We summarize and compare
different coupling schemes and describe first experimental implementations.
Hybrid mechanical systems enable new approaches to quantum control of
mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see
Journal-ref and DOI). This v2 corresponds to the published versio
Towards quantum computing with single atoms and optical cavities on atom chips
We report on recent developments in the integration of optical
microresonators into atom chips and describe some fabrication and
implementation challenges. We also review theoretical proposals for quantum
computing with single atoms based on the observation of photons leaking through
the cavity mirrors. The use of measurements to generate entanglement can result
in simpler, more robust and scalable quantum computing architectures. Indeed,
we show that quantum computing with atom-cavity systems is feasible even in the
presence of relatively large spontaneous decay rates and finite photon detector
efficiencies.Comment: 14 pages, 6 figure
A quantum spin transducer based on nano electro-mechancial resonator arrays
Implementation of quantum information processing faces the contradicting
requirements of combining excellent isolation to avoid decoherence with the
ability to control coherent interactions in a many-body quantum system. For
example, spin degrees of freedom of electrons and nuclei provide a good quantum
memory due to their weak magnetic interactions with the environment. However,
for the same reason it is difficult to achieve controlled entanglement of spins
over distances larger than tens of nanometers. Here we propose a universal
realization of a quantum data bus for electronic spin qubits where spins are
coupled to the motion of magnetized mechanical resonators via magnetic field
gradients. Provided that the mechanical system is charged, the magnetic moments
associated with spin qubits can be effectively amplified to enable a coherent
spin-spin coupling over long distances via Coulomb forces. Our approach is
applicable to a wide class of electronic spin qubits which can be localized
near the magnetized tips and can be used for the implementation of hybrid
quantum computing architectures
- …
