6,898 research outputs found

    The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) Biomarkers Predict Clinical Deterioration and Mortality in Immunocompromised Children Evaluated for Infection

    Get PDF
    Pediatric sepsis and bacterial infection cause significant morbidity and mortality worldwide, with immunocompromised patients being at particularly high risk of rapid deterioration and death. This study evaluated if PERSEVERE, PERSEVERE-II, or the PERSEVERE biomarkers, can reliably estimate the risk of clinical deterioration and 28-day mortality among immunocompromised pediatric patients. This is a single-center prospective cohort study conducted from July 2016 through September 2017 incorporating 400 episodes of suspected bacterial infection from the inpatient units at Cincinnati Children's Hospital Medical Center, a large, tertiary care children's hospital. The primary analysis assessed clinical deterioration within 72 hours of evaluation for infection. Secondarily, we assessed 28-day mortality. Clinical deterioration was seen in 15% of subjects. Twenty-eight day mortality was 5%, but significantly higher among critically ill patients. Neither PERSEVERE nor PERSEVERE-II performed well to predict clinical deterioration or 28-day mortality, thus we derived new stratification models using the PERSEVERE biomarkers with both high sensitivity and negative predictive value. In conclusion, we evaluated previously validated biomarker risk models in a novel population of largely non-critically ill immunocompromised pediatric patients, and attempted to stratify patients based on a new outcome metric, clinical deterioration. The new highly predictive models indicate common physiologic pathways to clinical deterioration or death from bacterial infection

    Persistence of the immune response induced by BCG vaccination.

    Get PDF
    BACKGROUND: Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. METHODS: A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-gamma) response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD) in a whole blood assay before, 3 months, 12 months (n = 148) and 3 years (n = 19) after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16). RESULTS: A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13%) failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13%) or 3 (3/19; 16%) years. IFN-gamma response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81%) made a detectable IFN-gamma response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38%) matched unvaccinated controls (p = 0.012); teenagers vaccinated in infancy were 19 times more likely to make an IFN-gamma response of > 500 pg/ml than unvaccinated teenagers. CONCLUSION: BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the majority of vaccinees, although the magnitude of the peripheral blood response wanes from 3 months to 12 months and from 12 months to 3 years post vaccination. The data presented here suggest that because of such waning in the response there may be scope for boosting anti-tuberculous immunity in BCG vaccinated children anytime from 3 months post-vaccination. This supports the prime boost strategies being employed for some new TB vaccines currently under development

    Injection of Positrons into a Dense Electron Cloud in a Magnetic Dipole Trap

    Full text link
    The creation of an electron space charge in a dipole magnetic trap and the subsequent injection of positrons has been experimentally demonstrated. Positrons (5eV) were magnetically guided from their source and injected into the trapping field generated by a permanent magnet (0.6T at the poles) using a cross field E ×\times B drift, requiring tailored electrostatic and magnetic fields. The electron cloud is created by thermionic emission from a tungsten filament. The maximum space charge potential of the electron cloud reaches -42V, which is consistent with an average electron density of (4±24 \pm 2) ×1012\times 10^{12} m3\text{m}^{-3} and a Debye length of (2±12 \pm 1) cm\text{cm}. We demonstrate that the presence of this space potential does not hamper efficient positron injection. Understanding the effects of the negative space charge on the injection and confinement of positrons represents an important intermediate step towards the production of a confined electron-positron pair plasma

    The YH database: the first Asian diploid genome database

    Get PDF
    The YH database is a server that allows the user to easily browse and download data from the first Asian diploid genome. The aim of this platform is to facilitate the study of this Asian genome and to enable improved organization and presentation large-scale personal genome data. Powered by GBrowse, we illustrate here the genome sequences, SNPs, and sequencing reads in the MapView. The relationships between phenotype and genotype can be searched by location, dbSNP ID, HGMD ID, gene symbol and disease name. A BLAST web service is also provided for the purpose of aligning query sequence against YH genome consensus. The YH database is currently one of the three personal genome database, organizing the original data and analysis results in a user-friendly interface, which is an endeavor to achieve fundamental goals for establishing personal medicine. The database is available at http://yh.genomics.org.cn

    Improved study of a possible Theta+ production in the pp -> p K0 sigma+ reaction with the COSY-TOF spectrometer

    Full text link
    The pp -> p K0 Sigma+ reaction was investigated with the TOF spectrometer at COSY at 3.059 GeV/c incident beam momentum. The main objective was to clarify whether or not a narrow exotic S = +1 resnance, the Theta+ pentaquark, is populated at 1.53 GeV/c2 in the K0 p subsystem with a data sample of much higher statistical significance compared to the previously reported data in this channel. An analysis of these data does not confirm the existence of the Theta+ pentaquark. This is expressed as an upper limit for the cross section sigma (pp -> p K0 Sigma+) < 0.15 microbarn at the 95 percent confidence level.Comment: 11 pages, 5 figure

    Who are these youths? Language in the service of policy

    Get PDF
    In the 1990s policy relating to children and young people who offend developed as a result of the interplay of political imperatives and populist demands. The ‘responsibilisation’ of young offenders and the ‘no excuses’ culture of youth justice have been ‘marketed’ through a discourse which evidences linguistic changes. This article focuses on one particular area of policy change, that relating to the prosecutorial decision, to show how particular images of children were both reflected and constructed through a changing selection of words to describe the non-adult suspect and offender. In such minutiae of discourse can be found not only the signifiers of public attitudinal and policy change but also the means by which undesirable policy developments can be challenged

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
    corecore