183 research outputs found

    Host-microbe interaction in the gastrointestinal tract

    Get PDF
    The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system, and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond. This article is protected by copyright. All rights reserved

    Switching to second-line antiretroviral therapy in resource-limited settings: comparison of programmes with and without viral load monitoring.

    Get PDF
    In high-income countries, viral load is routinely measured to detect failure of antiretroviral therapy (ART) and guide switching to second-line ART. Viral load monitoring is not generally available in resource-limited settings. We examined switching from nonnucleoside reverse transcriptase inhibitor (NNRTI)-based first-line regimens to protease inhibitor-based regimens in Africa, South America and Asia

    Long-term efficacy and safety of fostemsavir among subgroups of heavily treatment-experienced adults with HIV-1

    Get PDF
    Objectives: The aim of this study was to understand how demographic and treatment-related factors impact responses to fostemsavir-based regimens. Design: BRIGHTE is an ongoing phase 3 study evaluating twice-daily fostemsavir 600 mg and optimized background therapy (OBT) in heavily treatment-experienced individuals failing antiretroviral therapy with limited treatment options (Randomized Cohort 1-2 and Nonrandomized Cohort 0 fully active antiretroviral classes). Methods: Virologic response rates (HIV-1 RNA <40 copies/ml, Snapshot analysis) and CD4+ T-cell count increases in the Randomized Cohort were analysed by prespecified baseline characteristics (age, race, sex, region, HIV-1 RNA, CD4+ T-cell count) and viral susceptibility to OBT. Safety results were analysed by baseline characteristics for combined cohorts (post hoc). Results: In the Randomized Cohort, virologic response rates increased between Weeks 24 and 96 across most subgroups. Virologic response rates over time were most clearly associated with overall susceptibility scores for new OBT agents (OSS-new). CD4+ T-cell count increases were comparable across subgroups. Participants with baseline CD4+ T-cell counts less than 20 cells/μl had a mean increase of 240 cells/μl. In the safety population, more participants with baseline CD4+ T-cell counts less than 20 vs. at least 200 cells/μl had grade 3/4 adverse events [53/107 (50%) vs. 24/96 (25%)], serious adverse events [58/107 (54%) vs. 25/96 (26%)] and deaths [16/107 (15%) vs. 2/96 (2%)]. There were no safety differences by other subgroups. Conclusion: Week 96 results for BRIGHTE demonstrate comparable rates of virologic and immunologic response (Randomized Cohort) and safety (combined cohorts) across subgroups. OSS-new is an important consideration when constructing optimized antiretroviral regimens for heavily treatment-experienced individuals with limited remaining treatment options

    Effect of blood glucose level on standardized uptake value (SUV) in F-18- FDG PET-scan : a systematic review and meta-analysis of 20,807 individual SUV measurements

    Get PDF
    Objectives To evaluate the effect of pre-scan blood glucose levels (BGL) on standardized uptake value (SUV) in F-18-FDG-PET scan. Methods A literature review was performed in the MEDLINE, Embase, and Cochrane library databases. Multivariate regression analysis was performed on individual datum to investigate the correlation of BGL with SUVmax and SUVmean adjusting for sex, age, body mass index (BMI), diabetes mellitus diagnosis, F-18-FDG injected dose, and time interval. The ANOVA test was done to evaluate differences in SUVmax or SUVmean among five different BGL groups (200 mg/dl). Results Individual data for a total of 20,807 SUVmax and SUVmean measurements from 29 studies with 8380 patients was included in the analysis. Increased BGL is significantly correlated with decreased SUVmax and SUVmean in brain (p <0.001, p <0.001,) and muscle (p <0.001, p <0.001) and increased SUVmax and SUVmean in liver (p = 0.001, p = 0004) and blood pool (p=0.008, p200 mg/dl had significantly lower SUVmax. Conclusion If BGL is lower than 200mg/dl no interventions are needed for lowering BGL, unless the liver is the organ of interest. Future studies are needed to evaluate sensitivity and specificity of FDG-PET scan in diagnosis of malignant lesions in hyperglycemia.Peer reviewe

    The Risk and Policy Space for Loss and Damage: Integrating Notions of Distributive and Compensatory Justice with Comprehensive Climate Risk Management

    Get PDF
    The Warsaw Loss and Damage Mechanism holds high appeal for complementing actions on climate change adaptation and mitigation, and for delivering needed support for tackling intolerable climate related-risks that will neither be addressed by mitigation nor by adaptation. Yet, negotiations under the UNFCCC are caught between demands for climate justice, understood as compensation, for increases in extreme and slow-onset event risk, and the reluctance of other parties to consider Loss and Damage outside of an adaptation framework. Working towards a jointly acceptable position we suggest an actionable way forward for the deliberations may be based on aligning comprehensive climate risk analytics with distributive and compensatory justice considerations. Our proposed framework involves in a short-medium term, needs-based perspective support for climate risk management beyond countries ability to absorb risk. In a medium-longer term, liability-based perspective we particularly suggest to consider liabilities attributable to anthropogenic climate change and associated impacts. We develop the framework based on principles of need and liability, and identify the policy space for Loss and Damage as composed of curative and transformative measures. Transformative measures, such as managed retreat, have already received attention in discussions on comprehensive climate risk management. Curative action is less clearly defined, and more contested. Among others, support for a climate displacement facility could qualify here. For both sets of measures, risk financing (such as ‘climate insurance’) emerges as an entry point for further policy action, as it holds potential for both risk management as well as compensation functions. To quantify the Loss and Damage space for specific countries, we suggest as one option to build on a risk layering approach that segments risk and risk interventions according to risk tolerance. An application to fiscal risks in Bangladesh and at the global scale provides an estimate of countries’ financial support needs for dealing with intolerable layers of flood risk. With many aspects of Loss and Damage being of immaterial nature, we finally suggest that our broad risk and justice approach in principle can also see application to issues such as migration and preservation of cultural heritage

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
    corecore