462 research outputs found

    Global heart warming: kama muta evoked by climate change messages is associated with intentions to mitigate climate change

    Get PDF
    Concern about climate change is often rooted in sympathy, compassion, and care for nature, living beings, and future generations. Feeling sympathy for others temporarily forms a bond between them and us: we focus on what we have in common and feel a sense of common destiny. Thus, we temporarily experience communal sharing relationships. A sudden intensification in communal sharing evokes an emotion termed kama muta, which may be felt through tearing up, a warm feeling in the chest, or goosebumps. We conducted four pre-registered studies (n = 1,049) to test the relationship between kama muta and pro-environmental attitudes, intentions, and behavior. In each study, participants first reported their attitudes about climate change. Then, they received climate change-related messages. In Study 1, they saw one of the two moving video clips about environmental concerns. In Study 2, participants listened to a more or less moving version of a story about a typhoon in the Philippines. In Study 3, they listened to a different, also moving version of this story or an unrelated talk. In Study 4, they watched either a factual or a moving video about climate change. Participants then indicated their emotional responses. Finally, they indicated their intentions for climate mitigation actions. In addition, we measured time spent reading about climate-related information (Studies 1, 2, and 4) and donating money (Study 4). Across all studies, we found that feelings of kama muta correlated positively with pro-environmental intentions (r = 0.48 [0.34, 0.62]) and behavior (r = 0.10 [0.0004, 0.20]). However, we did not obtain evidence for an experimental effect of the type of message (moving or neutral) on pro-environmental intentions (d = 0.04 [−0.09, 0.18]), though this relationship was significantly mediated by felt kama muta across Studies 2–4. The relationship was not moderated by prior climate attitudes, which had a main effect on intentions. We also found an indirect effect of condition through kama muta on donation behavior. In sum, our results contribute to the question of whether kama muta evoked by climate-change messages can be a motivating force in efforts at climate-change mitigation

    Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

    Get PDF
    Nighttime vegetative uptake of carbonyl sulfide (COS) can exist due to the incomplete closure of stomata and the light independence of the enzyme carbonic anhydrase, which complicates the use of COS as a tracer for gross primary productivity (GPP). In this study we derived nighttime COS fluxes in a boreal forest (the SMEAR II station in Hyytiälä, Finland; 61°51′ N, 24°17′ E; 181 m a.s.l.) from June to November 2015 using two different methods: eddy-covariance (EC) measurements (FCOS-EC) and the radon-tracer method (FCOS-Rn). The total nighttime COS fluxes averaged over the whole measurement period were −6.8 ± 2.2 and −7.9 ± 3.8 pmol m−2 s−1 for FCOS-Rn and FCOS-EC, respectively, which is 33–38 % of the average daytime fluxes and 21 % of the total daily COS uptake. The correlation of 222Rn (of which the source is the soil) with COS (average R2  =  0.58) was lower than with CO2 (0.70), suggesting that the main sink of COS is not located at the ground. These observations are supported by soil chamber measurements that show that soil contributes to only 34–40 % of the total nighttime COS uptake. We found a decrease in COS uptake with decreasing nighttime stomatal conductance and increasing vapor-pressure deficit and air temperature, driven by stomatal closure in response to a warm and dry period in August. We also discuss the effect that canopy layer mixing can have on the radon-tracer method and the sensitivity of (FCOS-EC) to atmospheric turbulence. Our results suggest that the nighttime uptake of COS is mainly driven by the tree foliage and is significant in a boreal forest, such that it needs to be taken into account when using COS as a tracer for GPP

    Characterization of charge collection in CdTe and CZT using the transient current technique

    Full text link
    The charge collection properties in different particle sensor materials with respect to the shape of the generated signals, the electric field within the detector, the charge carrier mobility and the carrier lifetime are studied with the transient current technique (TCT). Using the well-known properties of Si as a reference, the focus is laid on Cadmium-Telluride (CdTe) and Cadmium-Zinc-Telluride (CZT), which are currently considered as promising candidates for the efficient detection of X-rays. All measurements are based on a transient-current technique (TCT) setup, which allows the recording of current pulses generated by an 241Am alpha-source. These signals will be interpreted with respect to the build-up of space-charges inside the detector material and the subsequent deformation of the electric field. Additionally the influence of different electrode materials (i.e. ohmic or Schottky contacts) on the current pulse shapes will be treated in the case of CdTe. Finally, the effects of polarization, i.e. the time-dependent degradation of the detector signals due to the accumulation of fixed charges within the sensor, are presented.Comment: 20 pages, 17 figure

    Empathic Concern Is Part of a More General Communal Emotion

    Get PDF
    Seeing someone in need may evoke a particular kind of closeness that has been conceptualized as sympathy or empathic concern (which is distinct from other empathy constructs). In other contexts, when people suddenly feel close to others, or observe others suddenly feeling closer to each other, this sudden closeness tends to evoke an emotion often labeled in vernacular English as being moved, touched, or heart-warming feelings. Recent theory and empirical work indicates that this is a distinct emotion; the construct is named kama muta. Is empathic concern for people in need simply an expression of the much broader tendency to respond with kama muta to all kinds of situations that afford closeness, such as reunions, kindness, and expressions of love? Across 16 studies sampling 2918 participants, we explored whether empathic concern is associated with kama muta. Meta-analyzing the association between ratings of state being moved and trait empathic concern revealed an effect size of, r(3631) = 0.35 [95% CI: 0.29, 0.41]. In addition, trait empathic concern was also associated with self-reports of the three sensations that have been shown to be reliably indicative of kama muta: weeping, chills, and bodily feelings of warmth. We conclude that empathic concern might actually be a part of the kama muta construct

    Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Full text link
    The initial energy transfer in photosynthesis occurs between the light-harvesting pigments and on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that F\"orster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which leads to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited state as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play a central role in the excited state population transfer to bacteriochlorophyll as the resonance between the donor-acceptor energy gap and vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

    Sleep maintains excitatory synapse diversity in the cortex and hippocampus

    Get PDF
    How sleep deprivation affects cognition remains elusive. Synaptome mapping of excitatory synapses in 125 regions of the mouse brain revealed that sleep deprivation selectively reduces synapse diversity in the cortex and hippocampus. Sleep deprivation targeted specific types and subtypes of excitatory synapses while maintaining total synapse density. Altered synaptic responses to neural oscillations in a computational model suggest that sleep prevents cognitive impairments by maintaining normal brain synaptome architecture
    corecore