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Abstract 
How sleep deprivation affects cognition remains elusive. Synaptome mapping of 

excitatory synapses in 125 regions of the mouse brain revealed that sleep deprivation 

selectively reduces synapse diversity in the cortex and hippocampus. Sleep 

deprivation targeted specific types and subtypes of excitatory synapses while 

maintaining total synapse density. Altered synaptic responses to neural oscillations in 

a computational model suggest that sleep prevents cognitive impairments by 

maintaining normal brain synaptome architecture. 

 

Main text 
Insufficient sleep is a global problem with serious consequences for cognition and 

mental health1. Synapses play a central role in many aspects of cognition, including 

the crucial function of memory consolidation during sleep2. Interference with the 

normal expression or function of synapse proteins is a cause of cognitive, mood and 

other behavioural problems in over 130 brain disorders3. Sleep deprivation (SD) has 

also been reported to alter synapse protein composition and synapse number, 

although with conflicting results4-7.  

 

To better understand the role of sleep in regulating synapse protein composition and 

synapse number we have employed synaptome mapping technology to uncover the 

effects on SD on the mouse brain. Synaptome mapping enables highly systematic and 

large-scale analysis of the protein composition, protein lifetime and morphology of 

billions of individual synapses on a brain-wide scale8-11. This approach has revealed 

that excitatory synapses are highly diverse and can be categorised into different types 

and subtypes that together comprise the ‘synaptome’ of the brain11. These varieties of 

synapses are spatially distributed across all areas of the brain, forming the ‘synaptome 

architecture’ (SA), which changes with age and disease8-11. The diversity of synapse 

types and subtypes increases dramatically during mouse development and, after 

stabilising in young adults, gradually reduces with aging, with preferential preservation 

of synapses with the longest protein lifetimes8,9. 

 

When the SA of a neuron or brain region receives patterns of neural activity it produces 

a spatiotemporal physiological response that is governed by the protein composition 
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of its synapses9-12. Thus, changes in the SA during development, aging or disease can 

impact on cognition. It is not known whether the synaptome and SA of excitatory 

synapses change during the normal sleep-wake cycle or are affected by SD. 

Addressing these questions may shed light on why sleep is important for cognitive 

function, as well as enhance our understanding of the biological mechanisms that 

control synapse diversity. 

 

Synaptome mapping of excitatory synapses in the brain utilises a line of mice that 

express fluorescently-labelled endogenous postsynaptic proteins PSD95 and 

SAP10211. These are scaffold proteins that assemble physically distinct multiprotein 

complexes13 and play a crucial role in synaptic transmission, synaptic plasticity and 

cognition14-16. Brain tissue sections from these mice were imaged in the mid-coronal 

plane at single-synapse resolution using high-throughput spinning disk microscopy 

with an optical resolution of approximately 270 nm. Our bespoke synaptome mapping 

pipeline11 was applied to detect and segment billions of individual synaptic puncta. We 

measured the density, intensity, size, shape, and colocalization parameters of each 

punctum. Based on these parameters, we classified each synapse into one of three 

main types (type 1: PSD95 only; type 2: SAP102 only; type 3: PSD95 and SAP102) 

and further divided them into 37 subtypes using established synapse catalogues and 

machine learning methods9-11. Finally, we spatially mapped all the measurements of 

individual puncta and subtypes to construct a global synaptic atlas across 125 brain 

regions in mice at stages throughout the normal sleep-wake cycle and after SD. 

 

As a first step toward understanding the role of sleep in the organisation of the SA of 

the brain, we asked if there were any changes in the synaptome and SA during the 

normal circadian sleep-wake cycle. We compared three time points: the end of the 

active phase (zeitgeber time (ZT) 23), and at the end (ZT11) and middle (ZT6) of the 

resting phase. We found no differences between these time points in any of the 

synapse parameters or in the density of synapse types and subtypes measured in any 

brain area (P>0.05, Bayesian test with Benjamini-Hochberg correction) 

(Supplementary Fig 1, 2), indicating that the synaptome and the SA are stable 

throughout the normal sleep-wake cycle. 
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We next asked if SD induces any changes in the synaptome and SA. We compared 

mice after 6 hours of SD (ZT6SD) with controls that were undisturbed over the same 

period (ZT6). SD did not affect the density or median intensity values of PSD95-

expressing and/or SAP102-expressing synapses in any of the 125 brain subregions 

examined (P>0.05, Bayesian test with Benjamini-Hochberg correction). However, SD 

did cause a decrease in the median size of synapses expressing PSD95 (P<0.05, 

Bayesian test with Benjamini-Hochberg correction) (Fig 1a, b) but not SAP102 

(P>0.05, Bayesian test with Benjamini-Hochberg correction). The synaptome map of 

PSD95 puncta size showed that 99% (67/68) of cortical and 87% (20/23) of 

hippocampal formation (HPF) subregions were affected by SD (P<0.05, Bayesian test 

with Benjamini-Hochberg correction), whereas subregions in other brain areas were 

unaffected (P>0.05, Bayesian test with Benjamini-Hochberg correction). These results 

indicate that SD selectively modifies PSD95-expressing synapse types in the cortex 

and HPF, which are regions crucial for learning, memory and sleep consolidation2. 

 

Next, we investigated whether SD influences the high synapse diversity characteristic 

of the cortex and HPF regions9,11. By calculating the diversity of excitatory synapses 

based on the densities of 37 synapse subtypes, we found a significant reduction in 

synapse diversity across subregions of the cortex and the HPF in response to SD (Fig 

1c, d, g). To better understand how this reduction in synapse diversity was reflected 

among the 37 synapse subtypes, we created a heatmap of the density change 

(Cohen’s d) for each subtype in cortex and HPF (Supplementary Fig 3). This shows 

that the density of some subtypes was consistently reduced across these regions 

whereas others were simultaneously increased, indicating that SD drives changes in 

the same subtypes in different neuron types. Furthermore, because there is no net 

change in synapse density, the subtypes that are reduced in density may be 

transforming their identity to those subtypes that are increased in density. 

 

In previous studies, we discovered that certain ‘short protein lifetime’ (SPL) subtypes 

of excitatory synapses exhibit faster turnover rates for PSD95 than others8. These SPL 

subtypes were involved in synaptic adaptations to mutations and aging8,10. By 

contrast, other ‘long protein lifetime’ (LPL) subtypes, with a slower rate of PSD95 

turnover, were selectively preserved in older individuals and suggested to play a role 

in long-term memory storage8,9. Based on these findings, we hypothesized that the 
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synapse subtypes most likely to undergo changes in response to SD would be those 

previously demonstrated under aging and mutation challenges to exhibit higher 

adaptability. Supporting our hypotheses, a heatmap representing the change in 

density of subtypes, ranked by their protein lifetime, across all regions of the cortex 

and HPF indicates that subtypes with longer protein lifetimes generally increased, 

whereas those with shorter lifetimes mostly decreased (Fig 2a). Additionally, the 

relationship between the lifetime of PSD95 protein and the change in density (Cohen's 

d) of each subtype in the cortex reveals that synapses with shorter protein lifetimes 

experienced a decrease, whereas those with longer protein lifetimes showed an 

increase (Fig 2b). To further examine this, we compared the density changes between 

subtypes with the longest and shortest protein lifetimes. This revealed that the 

subtypes with longer lifetimes exhibited significantly greater increases than those with 

shorter lifetimes in various cortical subregions, olfactory regions, cortical subplate, and 

select HPF subregions (P<0.05, Bayesian test with Benjamini-Hochberg correction) 

(Fig 2c). In summary, our findings suggest that SD leads to a reduction in the diversity 

of excitatory synapses overall, primarily driven by a decrease in the number of 

synapse subtypes with short protein lifetimes and an increase in those with long 

protein lifetimes. 

 

Distinct patterns of neural activity are recognized as a defining characteristic of sleep 

and wakefulness, and it is widely believed that these patterns contribute to the process 

of memory encoding8. The SA plays a crucial role in converting patterns of neuronal 

activity into a spatiotemporal output11,12 and this process can be modified when there 

are changes in the SA9-11. To investigate whether SD-induced changes in the SA of 

the CA1 stratum radiatum (CA1sr) in the HPF could affect responses to activity 

patterns related to sleep, wakefulness, and memory encoding, we employed a well-

established computational model9-11 (Fig 3a). When stimulating the CA1sr with five 

distinct activity patterns (gamma train, gamma burst, theta train, theta burst, sharp-

wave ripple), each pattern had a different effect on SD versus control (P=0.01, paired 

Kolmogorov-Smirnov test, N=121; Benjamini-Hochberg corrected, N=5; Cohen's d > 

1.9) (Fig 3b). Notably, the most pronounced effects were observed in spatial 

responses for theta burst and gamma train patterns, while the intensity of responses 

was primarily influenced by the sharp-wave ripple pattern (Fig 3b, c). 
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Our findings highlight the significance of sleep in preserving synaptome diversity in 

the cortex and HPF, which are brain regions specialized for memory and higher 

cognitive functions. Lifespan studies of the SA identified a correlation between 

synaptome diversity and the acquisition of complex behaviours during development 

and their impairments with aging9. By preserving synaptome diversity, sleep may 

contribute to optimizing cognitive function on a daily basis. 

 

Within just 6 hours of SD there was a shift in the populations of synapse subtypes 

toward LPL synapses. A similar shift occurs in the aging brain where LPL synapses 

are enriched8,9. The slower rate of protein turnover in LPL synapses may render the 

sleep deprived and aged brain less adaptable, potentially impairing learning and 

repair. Consistent with this, the repair of the synaptome architecture in Pax6 mice 

during development is primarily mediated by SPL synapses10. Together these 

observations suggest that synapse subtypes with rapid proteostasis play a vital role in 

the brain's adaptive responses to environmental and genetic perturbations.  

 

Our current understanding of the mechanisms behind the impairments in memory 

consolidation induced by SD is limited. Our study suggests the synaptome and SA 

may play a role from several perspectives. Firstly, we found that SD specifically affects 

the SA of the HPF and cortex, regions crucial for memory consolidation during 

sleep17,18. Secondly, as a consequence of the altered SA the electrophysiological 

responses in the CA1sr to theta burst and gamma train patterns were modified. These 

changes could impact the encoding and learning phases in the active state of the 

animal, ultimately affecting memory consolidation during sleep19,20. Furthermore, 

modifications in sharp-wave ripple activity could contribute further to memory 

impairments associated with SD by influencing replay activity supported by these 

oscillations during periods of quiet waking (when sleep-like patterns are observed in 

the HPF). Superimposed on these electrophysiological functions is the role of protein 

turnover, which Francis Crick highlighted almost four decades ago21 as a crucial 

determinant of memory consolidation. The imbalance between synapses with long and 

short protein lifetimes caused by SD might itself interfere with consolidation and even 

synergise with the altered electrophysiological responses. The modification of the SA 

of the brain offers a new framework for understanding the synaptic basis of SD and 

suggests that interventions targeting specific subtypes of synapses is an avenue that 
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could potentially prevent or reverse cognitive impairments associated with SD and 

aging. 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549645doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549645
http://creativecommons.org/licenses/by/4.0/


 
 

8 

Material and Methods 
Animals 

Animal procedures were performed in accordance with UK Home Office regulations 

and approved by Edinburgh University Director of Biological Services. Generation of 

the Psd95eGFP/eGFP;Sap102mKO2/mKO2 knock-in mouse line using C57BL/6 J mice and its 

characterisation have been described11. The same study11 was used to estimate the 

sample size needed, leveraging a t-test analysis. Adult 3-month-old mice were used 

for this study. Mice were transferred from their home cage to a new, conventional, 

enrichment-free cage, where they were single-housed for a 3-day habituation period 

(days 0-2) and for the day of the experiment (day 3). The animals had ad libitum 

access to water and food and were kept in a quiet room of ~22°C and 12-hour 

light:dark cycle (lights on 7 am, lights off 7 pm). For the purposes of masking the 

experimental groups to the experimenter during processing of samples and analysis, 

each animal received a randomized ID number which was maintained throughout 

tissue processing and imaging. 

 

Circadian sleep-wake cycle study 

A group of 30 animals was split into three equivalent groups of 10 animals, each 

comprising 5 males and 5 females. The mice were undisturbed during days 0-2 and 

their brain tissue was collected at ZT6, ZT11 or ZT23 on day 3 based on their assigned 

group.  

 

Sleep deprivation study 

A group of 18 animals was split into two groups: the ZT6 group (5 males and 3 females) 

and the ZT6SD group (6 males and 4 females). All mice were handled daily for 10 

minutes by the experimenter between 07:30 am and 08:00 am during habituation days 

0-2. On day 3, the mice were either left undisturbed (ZT6 group) or were kept awake 

by gentle handling (ZT6SD group), which comprised gentle auditory and tactile 

stimulation (tapping on the cage and touching the animals with a brush) when the 

animals were visually observed to have fallen asleep. The brain tissue of animals of 

both groups was collected 6 hours after lights-on (time point ZT6). The experimenter 

was present in the room during the 6 hours of the experiment on day 3 for both groups. 

 

Tissue collection and sectioning 
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At the collection time points mice were anaesthetised by intraperitoneal injection of a 

lethal dose of 0.1 ml 20% pentobarbital (Euthatal, Merial Animal Health). After 

complete anesthesia, 10 ml phosphate-buffered saline (PBS; Oxoid, Basingstoke, UK) 

were used per animal for cardiac perfusion, followed by 10 ml 4% (v/v) 

paraformaldehyde (PFA; Alfa Aesar, Heysham, UK) for fixation, both solutions at 4°C. 

Whole brains were dissected out and immediately postfixed at 4°C in 5 ml 4% PFA for 

4 hours, before being transferred to 5 ml 30% (w/v) sucrose (VWR Chemicals, 

Lutterworth, UK) in 1×PBS at 4°C for ~72 hours. In preparation for embedding, brains 

were kept for 1 hour in a 1:1 solution of 30% sucrose and Optimal Cutting Temperature 

Medium (OCT, VWR International) at 4°C. Finally, brains were placed in plastic cubic 

molds (Sigma-Aldrich) containing OCT for embedding, and were immediately frozen 

in a container with ~10 ml isopentane (Sigma-Aldrich) placed in liquid nitrogen. After 

completion of embedding, the tissue was stored at -80°C. Each brain was sectioned 

in the coronal  -1.9 mm bregma level at 18 μm thickness using a cryostat (NX70, 

Thermo Fisher Scientific, Gloucester, UK), and placed on glass SuperFrost Plus 

microscopy slides (Thermo Scientific). 

 

Tissue preparation 

In preparation for imaging, the brain tissue slices were rinsed with ice-cold 100 μl PBS 

for 5 min. Excess PBS was then removed with a Kimwipe tissue, and 12 μl Mowiol 

mounting medium (96 g glycerol (Sigma-Aldrich, BioXtra >99%), 38.4 g Mowiol 

(Calbiochem), 192 ml 0.2 M Tris buffer (pH 8.5), 96 ml milliQ water (18.2 MΩ)) with 

2.5% DABCO (1,4-diazabicyclo[2.2.2]octane; Sigma-Aldrich) was added to each 

section for optimal imaging without absorption, autofluorescence or light scattering, 

and for the prevention of photobleaching. Finally, each slice was covered with a 13 

mm diameter, 1.5 mm thick round glass coverslip (VWR International) and imaged the 

following day. 

 

Spinning-disk confocal microscopy  

Image capture employed an Andor Revolution XDi spinning-disk microscopy system 

equipped with a Yokogawa CSU-X1 50 μm pinhole spinning disk, an Olympus 

uPlanSAPO 100X oil-immersion lens (NA 1.4), and an Andor iXon Ultra monochrome 

back-illuminated EMCCD camera capturing images with 16-bit depth and 512 x 512 

pixels (pixel size of 0.084 μm). Frame averaging of 2 and 250 EMCCD gain was 
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applied to all synaptome mapping scans. The imaging settings for each fluorophore-

tagged protein in the synaptome mapping experiments were: PSD95eGFP 488 nm, 

QUAD emission filter, exposure time 0.07 s, power 20%; and for SAP102mKO2 561 

nm, QUAD emission filter, exposure time 0.1 s, power 40%. A single mosaic grid was 

used to cover each entire brain section with an adaptive z-focus set up by the user to 

follow the unevenness of the tissue using Andor iQ2 software.  

 

Synaptome mapping pipeline 

The synaptome mapping (SynMap) technique11 was established and standardized to 

systematically map individual PSD95eGFP puncta across the entire brain. Using deep 

learning methods developed in house, SynMap comprises a sequence of automated 

image analysis procedures that includes puncta detection, colocalization, 

classification, and map reconstruction, among others. To define the anatomical 

regions within SynMap, manual delineation was employed, using the Allen Reference 

Atlas (http://mouse.brain-map.org/) as a guiding resource for identifying the 

boundaries of distinct anatomical areas. 

 

Cohen’s d formula 

Cohen’s d effect size was calculated as per Cohen22 as follows: 

𝑑 = 	
𝑥! −	𝑥"

𝑠 	

where	𝑥 is the mean of one of the groups,  

where 𝑠 is the pooled standard deviation as 

𝑠 = 	'
(𝑛! − 1)𝑠!" + (𝑛" − 1)𝑠""

𝑛! + 𝑛" − 2
	

where the variance (𝑠") of one of the groups as 

𝑠!" =
1

𝑛! − 1
.(𝑥!,$ − 𝑥!)"
%!

$&!

	

 

 

Bayesian analysis  
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Bayesian estimation23 as used previously was applied to provide a more objective 

statistical test of the estimate the significance of the effects of SD on synaptome maps, 

including basic PSD95 parameters, subtype density and  diversity. 

 

A two-stage Bayesian estimation approach was used to examine the differential 

effects of SD on SPL and LPL subtypes. In the first stage, a probability distribution of 

effect size for both SPL and LPL regarding SD was generated. In the second stage, 

an additional Bayesian estimation was applied to the previously estimated distribution 

to determine the effects of SD on SPL or LPL subtypes. This two-stage testing method 

was implemented for each subregion to generate significant P-values and median 

Cohen's d values. Lastly, Benjamini-Hochberg corrections were applied to compute 

the corrected P-values across all brain regions. 

 

Computational modeling of synaptic responses 

Computational modeling of synaptic temporal responses was based on our previously 

described model9-11 representing physiology in the hippocampus, briefly outlined 

below. Here we modified this model to include the effects of timepoint and SD state. 

These synaptic models simulate changes in synapse temporal responses, EPSP 

amplitudes, short-term plasticity and temporal summation based on observations from 

neurons where PSD95 and SAP102 expression is altered14,15,24-26. For a description 

of the modeling of how the spatial differences in PSD95 and SAP102 affects individual 

synaptic time dynamics, see10. 

 

Synaptic scaling representing timepoint and SD state.  

As described in previous work9,11, the size of PSD95 and SAP102 synapses along the 

radial and tangential directions of the hippocampus (Fig. 3) is derived from the 

fluorescence intensity measurement of individual synaptic puncta and represented by 

color intensity; PSD95 (green) and SAP102 (magenta). These size values were used 

to scale the synaptic properties of the computational model to represent differences in 

animal group (timepoint and SD state). To model synaptic physiology corresponding 

to 3 month old animals in control and sleep deprived animals, differences in the size 

of PSD95 and SAP102 along radial as well as tangential directions of hippocampus 

were computed as outlined below. 
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The hippocampus was delineated into four tangential subregions (CA1, CA2, CA3 and 

dentate gyrus) and four radial layers (for CA1-3 stratum lacunosum-moleculare, 

stratum radiatum, stratum pyramidale and stratum oriens and for dentate gyrus the 

superior molecular layer, polymorphic layer, inferior granular layer and inferior 

molecular layer), for each of the animal groups. Next, we computed the geometric 

mean over individuals (N=8 for ZT6 and N=10 for the other groups) of PSD95 and 

SAP102 puncta size. Then, for each protein, we normalized data according to the 

following. We computed the directional gradient (largest minus smallest value) along 

each direction (radial or tangential) for each animal group and from this identified the 

minimum and the maximum span over all animal groups. Normalization was done by 

subtracting the minimum span and dividing by that maximun span. Thus, for radial and 

tangential size values of PSD95 and SAP102 puncta, the expression was compared 

over all animal groups. This relative size was used to scale the spatial distribution of 

synaptic values used in previous work11. This scaling thus allows for a comparison of 

animals at different daily time points and SD. 
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activity. RG performed data handling and generating brain maps. EB provided data on 

synapse protein turnover. NHK and JS provided supervision. SGNG supervised the 

project and wrote the manuscript. 
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Figure 1. SD alters brain synaptome architecture within the cortex and HPF 
SD reduces the size of PSD95-expressing synapses in cortical (a) and HPF (a,b) 

subregions. SD reduces synapse subtype diversity in cortical (c,g) and HPF (c,d,g) 

subregions. Blue regions (a-d), significant changes in Cohen’s d effect size (P<0.05, 

Bayesian test with Benjamini-Hochberg correction); grey regions (a-d), not 

significantly altered. Key for brain regions (e,f). Regions; CTX, isocortex; OLF, 

olfactory areas; HPF, hippocampal formation; CTXsp, cortical subplate; STR, striatum 

; TH, thalamus; HY, hypothalamus.  
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Figure 2. SD differentially impacts synapse subtypes 
(a) Heatmap of SD-induced changes in the density (Cohen’s d) of synapse subtypes 

in cortex (CTX) and HPF ranked from longest to shortest PSD95 lifetime8. For a 

heatmap showing significant changes corrected for multiple testing see 

Supplementary Fig 4. 

(b) SD-induced synapse subtype density changes in the cortex (average of all 

subregions) plotted against PSD95 lifetime (normalized percentage)8. 

(c) Comparison of the density changes of six LPL (2, 3, 5, 20, 34, 35) with six SPL (6, 

8, 11, 28, 29, 31) subtypes after SD. Red signifies subregions with greater change 

(Cohen’s d) in LPL than SPL synapses, whereas blue signifies subregions with 

greater change in SPL than LPL synapses; white subregions show no significant 

differences. 
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Figure 3. Computational modelling of physiological responses in the CA1sr to 
patterns of activity after SD  

(a) The model simulates a 2D (11 x 11) array of synapses (boxes) expressing 

PSD95 and SAP102 measured along the radial and tangential axes of the 

CA1sr10,11.  

(b) Five patterns of neuronal activity were used for CA1sr stimulation in the 

computational model. The summed excitatory postsynaptic potential (EPSP) 

response amplitudes in the ZT6 and ZT6SD groups were quantified (colour bar, 

arbitrary units). 

(c) Comparison of the extent of disruption caused by SD for each of the five 

patterns of activity. ED, Euclidian distance. 
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Supplementary Figure 1 The synaptome architecture of PSD95 and SAP102 
puncta does not change in the circadian cycle. 
(a) Schematic representation of light/dark cycle, with zeitgeiber time (ZT) showing 

when mice were sampled (ZT23, ZT6, ZT11) and corresponding 24-hour clock 

(06:00, 13:00, 18:00). 

(b) Key for brain regions shown in maps (c,d). 

(c) Synaptome maps of PSD95 puncta density (top row), intensity (middle row), size 

(bottom row) changes for periods ZT23-ZT6 (left column), ZT6-ZT11 (middle 

column), ZT23-ZT11 (right column) in brain regions shows no significant changes 

(grey; P>0.05, Bayesian test with Benjamini-Hochberg correction). 

(d) Synaptome maps of SAP102 puncta density (top row), intensity (middle row), 

size (bottom row) changes for periods ZT23-ZT6 (left column), ZT6-ZT11 (middle 

column), ZT23-ZT11 (right column) in brain regions shows no significant changes 

(grey; P>0.05, Bayesian test with Benjamini-Hochberg correction).  
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Supplementary Figure 2 The synaptome architecture of Type 1, Type 2 and 
Type 3 synapse subtypes does not change in the circadian cycle. 
Heatmaps of SD-induced changes in the density (Cohen’s d) of synapse subtypes in 

brain regions for periods ZT23-ZT6 (left panel), ZT6-ZT11 (middle panel), ZT23-

ZT11 (right panel). All datapoints show P>0.05, Bayesian test with Benjamini-

Hochberg correction. Regions; isocortex; OLF, olfactory areas; HPF, hippocampal 

formation; CS, cortical subplate; STR, striatum; TH, thalamus; HY, hypothalamus.  
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Supplementary Figure 3. SD differentially impacts synapse subtypes 
Heatmap of SD-induced changes in the density (Cohen’s d) of synapse types and 

subtypes. Uncorrected. Significant changes are shown in Supplementary Fig 4. 

Regions: isocortex; OLF, olfactory regions; HPF, hippocampal formation. 
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Supplementary Figure 4. SD differentially impacts synapse subtypes with long 
and short protein lifetimes. 
 

Heatmap of SD-induced changes in the density (Cohen’s d) of synapse subtypes 

ranked from longest to shortest PSD95 lifetime8. Significant changes are shown 

(P<0.05, Bayesian test with Benjamini-Hochberg correction). 
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