147 research outputs found

    The 103^{103}Rh NMR Spectroscopy and Relaxometry of the Rhodium Formate Paddlewheel Complex

    Full text link
    The NMR spectroscopy of spin-1/2 nuclei with low gyromagnetic ratio is challenging, due to the low NMR signal strength. Methodology for the rapid acquisition of 103^{103}Rh NMR parameters is demonstrated for the case of the rhodium formate "paddlewheel" complex Rh2(HCO2)4\mathrm{Rh_2(HCO_2)_4}. A scheme is described for enhancing the 103^{103}Rh signal strength by polarization transfer from 1^{1}H nuclei and which also greatly reduces the interference from ringing artifacts, a common hurdle for the direct observation of low-γ\gamma nuclei. The 103^{103}Rh relaxation time constants T1T_1 and T2T_2 are measured within 20 minutes using 1^{1}H-detected experiments. The field-dependence of the 103^{103}Rh T1T_1 is measured. The high-field relaxation is dominated by the chemical shift anisotropy (CSA) mechanism. The 103^{103}Rh shielding anisotropy is found to be very large: Δσ=9900±540ppm|\Delta\sigma|=9900\pm540\mathrm{\,ppm}. This estimate is compared with density functional theory calculations.Comment: submitted to JC

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal

    The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC

    Get PDF
    Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully operational and serve for collecting elastic and diffractive proton-proton scattering data. Like for other moveable devices approaching the high intensity LHC beams, a reliable and precise control of the RP position is critical to machine protection. After a review of the RP movement control and position interlock system, the crucial task of alignment will be discussed.Comment: 3 pages, 6 figures; 2nd International Particle Accelerator Conference (IPAC 2011), San Sebastian, Spain; contribution MOPO01

    Nucleon Form Factors in Dispersion Theory

    Full text link
    Dispersion relations provide a powerful tool to analyse the electromagnetic form factors of the nucleon both in the space-like and time-like regions with constraints from other experiments, unitarity, and perturbative QCD. We give a brief introduction into dispersion theory for nucleon form factors and present first results from our ongoing form factor analysis. We also calculate the two-pion continuum contribution to the isovector spectral functions drawing upon the new high statistics measurements of the pion form factor by the CMD-2, KLOE, and SND collaborations.Comment: 9 pages, 9 figures, invited talk at the Symposium "20 Years of Physics at the Mainz Microtron MAMI", October 20-22, 2005, Mainz, German

    Seizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalography

    Get PDF
    Understanding changes in brain rhythms provides useful information to predict the onset of a seizure and to localize its onset zone in epileptic patients. Brain rhythms dynamics in general, and phaseamplitude coupling in particular, are known to be drastically altered during epileptic seizures. However, the neural processes that take place before a seizure are not well understood. We analysed the phaseamplitude coupling dynamics of stereoelectroencephalography recordings (30 seizures, 5 patients) before and after seizure onset. Electrodes near the seizure onset zone showed higher phase-amplitude coupling. Immediately before the beginning of the seizure, phase-amplitude coupling dropped to values similar to the observed in electrodes far from the seizure onset zone. Thus, our results bring accurate information to detect epileptic events during pre-ictal periods and to delimit the zone of seizure onset in patients undergoing epilepsy surgeryFil: Cámpora, Nuria Elide. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; ArgentinaFil: Mininni, Camilo Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentin

    European Reference Network for Rare Vascular Diseases (VASCERN) position statement on cerebral screening in adults and children with hereditary haemorrhagic telangiectasia (HHT)

    Get PDF
    Hereditary haemorrhagic telangiectasia (HHT) is a multisystemic vascular dysplasia inherited as an autosomal dominant trait. Approximately 10 % of patients have cerebral vascular malformations, a proportion being cerebral arteriovenous malformations (AVMs) and fistulae that may lead to potentially devastating consequences in case of rupture. On the other hand, detection and treatment related-risks are not negligible, and immediate. While successful treatment can be undertaken in individual cases, current data do not support the treatment of unruptured AVMs, which also present a low risk of bleeding in HHT patients. Screening for these AVMs is therefore controversial. Structured discussions, distinctions of different cerebrovascular abnormalities commonly grouped into an "AVM"bracket, and clear guidance by neurosurgical and neurointerventional radiology colleagues enabled the European Reference Network for Rare Vascular Disorders (VASCERN-HHT) to develop the following agreed Position Statement on cerebral screening: 1) First, we emphasise that neurological symptoms suggestive of cerebral AVMs in HHT patients should be investigated as in general neurological and emergency care practice. Similarly, if an AVM is found accidentally, management approaches should rely on expert discussions on a case-by-case basis and individual risk-benefit evaluation of all therapeutic possibilities for a specific lesion. 2) The current evidence base does not favour the treatment of unruptured cerebral AVMs, and therefore cannot be used to support widespread screening of asymptomatic HHT patients. 3) Individual situations encompass a wide range of personal, cultural and clinical states. In order to enable informed patient choice, and avoid conflicting advice, particularly arising from non-neurovascular interpretations of the evidence base, we suggest that all HHT patients should have the opportunity to discuss knowingly brain screening issues with their healthcare provider. 4) Any screening discussions in asymptomatic individuals should be preceded by informed pre-test review of the latest evidence regarding preventative and therapeutic efficacies of any interventions. The possibility of harm due to detection of, or intervention on, a vascular malformation that would not have necessarily caused any consequence in later life should be stated explicitly. We consider this nuanced Position Statement provides a helpful, evidence-based framework for informed discussions between healthcare providers and patients in an emotionally charged area

    Hippocampal Desynchronization of Functional Connectivity Prior to the Onset of Status Epilepticus in Pilocarpine-Treated Rats

    Get PDF
    Status epilepticus (SE), a pro-epileptogenic brain insult in rodent models of temporal lobe epilepsy, is successfully induced by pilocarpine in some, but not all, rats. This study aimed to identify characteristic alterations within the hippocampal neural network prior to the onset of SE. Sixteen microwire electrodes were implanted into the left hippocampus of male Sprague-Dawley rats. After a 7-day recovery period, animal behavior, hippocampal neuronal ensemble activities, and local field potentials (LFP) were recorded before and after an intra-peritoneal injection of pilocarpine (350 mg/kg). The single-neuron firing, population neuronal correlation, and coincident firing between neurons were compared between SE (n = 9) and nonSE rats (n = 12). A significant decrease in the strength of functional connectivity prior to the onset of SE, as measured by changes in coincident spike timing between pairs of hippocampal neurons, was exclusively found in SE rats. However, single-neuron firing and LFP profiles did not show a significant difference between SE and nonSE rats. These results suggest that desynchronization in the functional circuitry of the hippocampus, likely associated with a change in synaptic strength, may serve as an electrophysiological marker prior to SE in pilocarpine-treated rats

    Single-neuron dynamics in human focal epilepsy

    Get PDF
    Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons
    corecore