1,108 research outputs found

    Random perfect lattices and the sphere packing problem

    Full text link
    Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily by an algorithm. Their number however grows super-exponentially with the dimension so to get an idea of their properties we propose to study a randomized version of the algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte-Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best know packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A_d and D_d) and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a competitor, in which their packing fraction decreases super-exponentially, namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure

    Origin of atomic clusters during ion sputtering

    Get PDF
    Previous studies have shown that the size distributions of small clusters ( n<=40 n = number of atoms/cluster) generated by sputtering obey an inverse power law with an exponent between -8 and -4. Here we report electron microscopy studies of the size distributions of larger clusters ( n>=500) sputtered by high-energy ion impacts. These new measurements also yield an inverse power law, but one with an exponent of -2 and one independent of sputtering yield, indicating that the large clusters are produced when shock waves, generated by subsurface displacement cascades, ablate the surface

    Therapeutics and COVID-19-A living WHO guideline : Endorsement by the Scandinavian Society of Anaesthesiology and Intensive Care Medicine

    Get PDF
    The Clinical Practice Committee of the Scandinavian Society of Anaesthesiology and Intensive Care Medicine endorses the Living WHO guideline on therapeutics and COVID-19. This trustworthy continuously updated guideline serves as a highly useful decision aid for Nordic anaesthesiologists caring for patients with COVID-19.Non peer reviewe

    Environmental effects on progesterone profile measures of dairy cow fertility

    Get PDF
    Environmental effects on fertility measures early in lactation, such as the interval from calving to first luteal activity (CLA), proportion of samples with luteal activity during the first 60 days after calving (PLA) and interval to first ovulatory oestrus (OOE) were studied. In addition, traditional measurements of fertility, such as pregnancy to first insemination, number of inseminations per service period and interval from first to last insemination were studied as well as associations between the early and late measurements. Data were collected from an experimental herd during 15 years and included 1106 post-partum periods from 191 Swedish Holsteins and 325 Swedish Red and White dairy cows. Individual milk progesterone samples were taken twice a week until cyclicity and thereafter less frequently. First parity cows had 14.8 and 18.1 days longer CLA (LS-means difference) than second parity cows and older cows, respectively. Moreover, CLA was 10.5 days longer for cows that calved during the winter season compared with the summer season and 7.5 days longer for cows in tie-stalls than cows in loose-housing system. Cows treated for mastitis and lameness had 8.4 and 18.0 days longer CLA, respectively, compared with healthy cows. OOE was affected in the same way as CLA by the different environmental factors. PLA was a good indicator of CLA, and there was a high correlation (−0.69) between these two measurements. Treatment for lameness had a significant influence on all late fertility measurements, whereas housing was significant only for pregnancy to first insemination. All fertility traits were unfavourably associated with increased milk production. Regression of late fertility measurements on early fertility measurements had only a minor association with conception at first AI and interval from first to last AI for cows with conventional calving intervals, i.e. a 22 days later, CLA increased the interval from first to last insemination by 3.4 days. Early measurements had repeatabilities of 0.14–0.16, indicating a higher influence by the cow itself compared with late measurements, which had repeatabilities of 0.09–0.10. Our study shows that early fertility measurements have a possibility to be used in breeding for better fertility. To improve the early fertility of the cow, there are a number of important factors that have to be taken into account

    Clinical practice guideline on spinal stabilisation of adult trauma patients : Endorsement by the Scandinavian Society of Anaesthesiology and Intensive Care Medicine

    Get PDF
    The Clinical Practice Committee of the Scandinavian Society of Anaesthesiology and Intensive Care Medicine endorses the clinical practice guideline New clinical guidelines on the spinal stabilisation of adult trauma patients-consensus and evidence based. The guideline can serve as a useful decision aid for clinicians caring for patients with traumatic spinal cord injury. However, it is important to acknowledge that the overall certainty of evidence supporting the guideline recommendations was low, implying that further research is likely to have an important impact on the confidence in the estimate of effect.Peer reviewe

    Report of the QCD Working Group

    Get PDF
    The activities of the QCD working group concentrated on improving the understanding and Monte Carlo simulation of multi-jet final states due to hard QCD processes at LEP, i.e. quark-antiquark plus multi-gluon and/or secondary quark production, with particular emphasis on four-jet final states and b-quark mass effects. Specific topics covered are: relevant developments in the main event generators PYTHIA, HERWIG and ARIADNE; the new multi-jet generator APACIC++; description and tuning of inclusive (all-flavour) jet rates; quark mass effects in the three- and four-jet rates; mass, higher-order and hadronization effects in four-jet angular and shape distributions; b-quark fragmentation and gluon splitting into b-quarks.Comment: 95 pages, 48 figures, contribution to Proceedings of the LEP2 Monte Carlo Workshop. References for NLO 4-jet matrix elements adde

    DNA-Mediated Excitonic Upconversion FRET Switching

    Get PDF
    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy upconversion via upconversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based upconversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an upconversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy upconversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy upconversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics
    corecore