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Abstract
Excitonics is a rapidly expanding field of nanophotonics inwhich the harvesting of photons, ensuing
creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge
separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic
and light harvesting antennas formany applications. FRET funnels excitons down an energy gradient
resulting in energy losswith each step along the pathway. Conversely, excitonic energy upconversion
via upconversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to
boost the exciton energy. Although FRET-based upconversion has been demonstrated, it suffers from
lowFRET efficiency and lacks the ability tomodulate the FRET.We have engineered an upconversion
FRET-based switch by combining lanthanide-dopedUCNPs andfluorophores that demonstrates
excitonic energy upconversion by nearly a factor of 2, an excited state donor to acceptor FRET
efficiency of nearly 25%, and an acceptor fluorophore quantumefficiency that is close to unity. These
findings offer a promising path for energy upconversion in nanophotonic applications including
artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

1. Introduction

Inmany nanophotonic systems, excitons are funneled down an energy gradient created by an array of
fluorophores possessing successively lower excitation energies. Examples of such excitonic systems include light
harvesting antennae in higher plants [1, 2], certain bacteria [3, 4], synthetic waveguides [5, 6], switches, and logic
gates [7–9]. The energy is degraded due to losses at each step in the exciton transfer process, limiting the
performance of exciton funnels. This degradation raises the question of whether the exciton funnel performance
can be improved via an upconversion process inwhich two excitons combine to form a single exciton of higher
energy, thus rejuvenating the exciton energy. Indeed, nature appears to have taken this approach, as energy
upconversion has been observed in the energy transfer pathways present within the Fenna–Mathews–Olson
[10–12] complexes of natural photosynthetic systems [13, 14]. Optical upconversion also occurs in lanthanide-
dopedmaterials such asNaYF4:Gd

3+, Yb3+, Er3+, both in bulk solid crystals and nanoparticles; however, the
upconversion process in thesematerials differsmechanistically from the natural upconversion phenomenon
[15, 16]. Although inherently inefficient, the efficiencies of upconversion nanoparticles (UCNPs) continue to
improve [17], which offers an opportunity to pursue energy upconversion in artificial excitonic systems
including excitonic wires, switches, and light harvesting antennae. UCNPs are being explored in the biomedical
field as alternatives or supplements to current imaging agents, bioassays, and drug deliverymodalities because of
their narrow bandwidth emission, near zero autofluorescence, low toxicity, deep tissue penetrating near infrared
(NIR) excitation, andminimal photobleaching [16, 18–24]. Additionally, UCNPs are currently studied as
potential components in optoelectronic applications such as light-emitting diodes [25],fluorescent lighting
[26], telecommunications [27], security coatings [23, 24], and photovoltaic devices [28, 29]. Further
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development ofUCNP systemsmay provide significant advancements in these nanomedicine and
optoelectronics applications.

Combining optical upconversion and Förster resonance energy transfer (FRET) can create newhybrid
UCNP systems affording production of novel bioanalytical tools [30] and improve device functionality in
optoelectronics applications [31, 32]. Upconversion in lanthanide-doped nanoparticles is a nonlinear optical
phenomenon achieved through the excitation of rare earth ions by two ormore lower energyNIR photons,
resulting inmultistep electronic transitions followed by higher energy visible photon emission [27, 33, 34].
FRET is excitonic energy transfer on the nanometer scale between donor and acceptormoleculesmediated by
dipole–dipole coupling [35, 36]. The acceptormolecule need not be afluorophore, and the energy transferred
need not be radiated asfluorescence [37–39]. Though there aremultiple ways inwhich combined upconversion
and FRET systems can be constructed, here the focuswill be on FRETbetween aUCNPdonor and an acceptor
fluorophore. During FRET, thefluorescence from the donorUCNPdecreases (i.e., a quenching effect)with a
simultaneous increase in the acceptormolecule’sfluorescence as the donor–acceptor pair are brought into
proximity (i.e., a transfer effect) [40]. A simple schematic of the upconversion to FRETprocess is provided in
figure 1, inwhich the sensitizer–activator complex provides the two photon absorption pathwaywithin the
UCNP [15–17, 33, 41], thereby initiating the FRET cascade from theUCNP to the fluorophore. In this report, we
demonstrate the upconversion of incident infrared photons inNaYF4:Gd

3+, Yb3+, Er3+nanoparticles followed
by excitonic transfer (i.e., FRET) tofluorophores that emit photons in the visible region, that can be dynamically
switched ‘ON’ and ‘OFF’. Switching is accomplished viaDNAhybridization and toehold-mediatedDNA
strand-displacement reactions [42], inwhich auxiliaryDNAoligomers attached to theUCNPs are used to
control subsequent reversible binding ofDNAoligomers carrying thefluorophores to the nanoparticle.

Spectral overlap between the donor emission and the acceptor absorption and donor–acceptor distance are
the two key components required for efficient FRET. In an ideal FRETprocess, such as that depicted in
figure 2(a), complete nonradiative energy transfer between the donor and acceptor occurs (dashed curve). This
energy transfer can bemaximized by optimizing the spectral overlap and reducing the distance between the
donor and acceptor tomaximize FRET.More typically, competing parasitic processes such as bleed-through,
cross-talk, internal energy loss, and donor emission into free space decrease FRET efficiency (solid curve,
figure 2(a)). As defined by Berney andDanuser [43], cross-talk occurs when the donor emission spectrum
overlaps that of the acceptor emission, thereby artificially increasing the apparent acceptor emission signal.
Cross-talk [21–23] can be virtually eliminated through the careful selection of the fluorophore acceptor such
that its emission does not overlap that of the donor. Conversely, bleed-through [43] involves undesired
excitation of the acceptormolecule at the donor excitationwavelength. An advantage toUCNP-fluorophore
FRET systems, bleed-through is eliminated completely because the excitationwavelength of theUCNPdonor

Figure 1. Schematic illustration of optical upconversion followed by FRET for a donor (UCNP)/acceptor (fluorophore) pair. The
donorUCNPundergoes amulti-step energy transition upon low energy near infrared (NIR) excitation as detailed in various review
publications [15–17, 27, 33, 41]. Upon relaxation to the ground state, theUCNPnon-radiatively transfers its energy via dipole–dipole
interactions (FRET) to an acceptormolecule (fluorophore). This process results in emission of a photon from the acceptor.
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lies in theNIR spectrum,while the acceptor fluorophore excitation is in the visible. As a result, the incident
UCNP excitation photons do not have sufficient energy to directly excite the acceptor fluorophore.

Figure 2(b) shows the relevant absorption and emission spectra of the FRET system components used in this
study (i.e., spectral overlap). This system is composed of an upconvertingNaYF4 nanoparticle donor dopedwith
Gd3+, Yb3+, Er3+ and a 6-carboxy-X-rhodamine (ROX)fluorophore acceptor bound to theUCNP via a
hybridizedDNA tether. Nanoparticle information, DNA sequences, and fluorophore details are provided in
supplementarymaterial S1. The lowwavelength absorbance shoulder of the ROX acceptor coincides well with
the emission peaks of theUCNPdonor in the range of 515–562 nm,which provides adequate spectral overlap
for FRET. Furthermore, cross-talk isminimized as the acceptor emission peak lies in a longer wavelength region
than the donor emission resulting in virtually no cross-talk at the 608 nmpeakROX acceptor emission
wavelength. It should be noted that some attenuation of theUCNPfluorescence in the range of 515–562 nm
occurs whenROX is introduced, whichwill be discussed later. There is also potential cross-talk between the
donor and acceptor in the 645–675 nm range; however, this spectral region falls well outside the spectral overlap
region and does not contribute to the FRET. Thus, the unique optical properties of theUCNPdonor and choice
of ROX as the acceptor allow clear observation of donor quenching and acceptor emission in the spectral data.

There have been several reports ofUCNP-fluorophore FRET systems [44–49], which have also been referred
to as energy transfer [18, 50] or luminescence resonance energy transfer systems [51–56]. To the best of our
knowledge, published investigations ofUCNP-fluorophore FRET systems have primarily demonstrated one
aspect of the FRETprocess, namely donor quenching [57–60], accompanied by a nominal increase in acceptor
molecule emission suggesting an inefficient FRETprocess. In order for potential optoelectronic applications of
UCNP-fluorphore FRET-based constructs, realization of higher efficiency FRET (figure 2(a)), inwhich both
donor quenching and acceptor emission are significant, is an essential challenge thatmust be addressed.

Figure 2. (a) Schematic of fluorescence emission spectra demonstrating: donor emission (1)without an acceptor present and thus zero
FRET, (dotted line) or (2) in the presence of an acceptor, whereby the FRETprocess quenches the donor emission (λ2) resulting in
acceptor emission (λ3) as occurs in typical FRET (solid line) and varies depending on FRET efficiency. If the FRETprocess approaches
100% transfer efficiency, and the acceptor has afluorescence quantum yield of unity, near total quenching of the donor occurs and
nearly 100%of the quanta absorbed by the donor are emitted asfluorescence photons by the acceptor (ideal FRET, dashed line). (b)
Spectral overlap of theUCNP andROX fluorophore. The emission spectrumof theNaYF4 nanoparticle co-dopedwithGd

3+, Yb3+,
Er3+ (black solid line) overlaps the shoulder of the ROXabsorbance spectrum (green dashed line). The emission spectrumof ROX,
which hasminimal overlapwith that of theUNCP emission, is also shown (orange solid line).
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2.Materials andmethods

To address the primary challenge of hydrophobicity of as-synthesized lanthanide-dopedUCNPs,
biofunctionalization techniques [18] have been used such as PEGylation [61], oxidation [50], phospholipid
coating [44], recombinant antibody fragment coating [46], aminoethyl dihydrogen phosphate [49], citrate
capping [60], polyacrylic acid [62], streptavidin coating [53, 63], and silica shell growth [45, 64, 65]. TheseUCNP
modificationmethods enable the use of acceptormolecules currently employed in the FRETprocess; however,
these techniques potentially increase theUCNPdimensions [44] resulting in greater donor–acceptor pair
separation distances, which decreases the FRET efficiency [58, 66]. Additionally, typical biofunctionalization
methods, such as covalent lectin binding [57], covalent biotinylation [49, 50, 53, 63, 64],fluorophore
incorporationwithin hydrophilic coatings [44, 61, 67, 68], amino group conjugation [45, 58], stain intercalation
[52], covalentDNA immobilization [60], and covalent sulfhydryl linkage [69] involvemulti-step processes.
Thesemulti-step biofunctionalization processes reduce overall yield and add complications to theUCNP
preparation. Recently, a simple single-step ligand exchangemethodwas reported by Li et al [70], inwhich single
strandedDNA (ssDNA)was directly attached to theUCNP in a one step process, producing hydrophilic,
monodispersedUCNPs for salt concentrations ranging from5 to 100 mM. Subsequently, theywere able to
selectively attach a variety of ssDNA functionalized particles such as gold nanoparticles (AuNPs), Cy3
fluorophores, and cell targeting aptamers viaWatson–Crick [71]hybridization to the available ssDNA.We
believe this ssDNA functionalizationmethod is advantageous forUCNP-based excitonic FRETbecause not only
is it a single-step process, but additionally it reduces the donor–acceptor pair separation distance, thereby
enhancing their FRET efficiency.Moreover, ssDNA functionalization enables themodulation of FRET through
toehold-mediated strand-displacement reactions [42]when invasion (INV) and restoration (RES) ssDNA
strands are introduced to performUCNP-based FRET excitonic switching.

To explore the possibility ofDNA-mediatedUCNP-fluorophore FRET switching, four distinct challenges
needed to be addressed: (i) rendering the hydrophobicUCNPs hydrophilic, (ii) functionalizing the hydrophilic
UCNPs using the ssDNAbiofunctionalizationmethod, (iii) devising a FRET system, and (iv) designing a strand
displacement sequence. Oleic acid capped, hydrophobicUCNPswere rendered both hydrophilic and
functionalizedwith ssDNA, denoted asUCNPd, via the one step ssDNAbiofunctionalizationmethod
demonstrated by Li et al [70], as described in the supplementarymaterial S2. In addition to imparting
hydrophilicity, the ssDNAon theUNCP surface serve as tethers towhich complementary ROX-functionalized
ssDNAoligomers can hybridize. ROXwas chosen as the acceptor because it can be readily attached to ssDNA
and it provides adequate spectral overlapwith the donor as discussed previously (figure 2(b)). The base
sequences for theDNA strands involved in toehold-mediated strand displacementwere designed using
UNIQUIMER [72] software. UNIQUIMER employs random ssDNA sequence generation combinedwith
parameters to control base pair (bp) length, complementarity, andC-G content of each strand. Thermodynamic
analysis using theweb-basedNUPACK [73] programdetermined the free energy changes as eachDNAoligomer
(ROX, INV, or RES) hybridizes to its complement.

The scheme that was implemented to control the FRETbetween ssDNA functionalizedUCNPd and the ROX
fluorophore is illustrated infigure 3. The ROX fluorophore is covalently attached to a ssDNAoligomer
complementary to a portion of theUCNPd ssDNA sequence; this ROX-DNApair is referred to as ROXa.
Figure 3 (1) shows theUCNPd in the ‘OFF’ state where noROXemission is observed. Switching to the ‘ON’ state
occurs when theROXa hybridizes to the tether on theUCNPd, as shown in (2). Here, the hybridization of the
ROXa strand to a 10 nucleotide (nt) toehold binding region (TH) on theUCNPd tether holds the ROXa

fluorophore in proximity to theUCNPd, enabling FRET and the consequent ROX emission. Switching to the
‘OFF’ state is accomplished by displacement of the ROXa from the donorwith the introduction of a 22 nt
invasion (INV) strand (3). Finally, restoration of the ROXa strand to theUCNPd, and thus reestablishing the
‘ON’ state, is achieved by addition of a 17 nt restoration (RES) strand displacing ROXa by preferentially
hybridizingwith the INV strand (4). The process can be iterated to reversibly switch the systembetween the ‘ON’
and ‘OFF’ states (5). For the experiments described in this paper, the concentration of availableDNA tethers was
estimated to be∼4 μMusing the procedure described in supplementarymaterial S2.3.

3. Results and discussion

The state of the FRET systemwasmonitored in twoways after each switching event via fluorescence
spectroscopy under conditions of continuous 980 nm excitation (instrumentation details provided in
supplementarymaterial S3). The emission intensity of the donor and the acceptor were acquired as a function of
wavelength and time; the latter was performed at the peak emissionwavelength of the ROX acceptor (608 nm).
Figure 4 shows the normalized fluorescence spectra obtained for the ‘OFF’ and ‘ON’ states before and after
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addition of INV andRES strands to induce one cycle of excitonic switching. The normalization process is
described further in supplementarymaterial S4. As a control, the initial emission spectrumof theUCNPd in the
absence of ROXa is shown as the black curve infigure 4.

The red curve infigure 4 shows that once theROXa strand attaches to theUCNPd, a clear decrease in the
donor emission peaks in the range of 515–562 nmand a concomitant increase in the acceptor emission in the
range of 580–630 nm, indicating FRET from the donor (upper inset) to the acceptor (lower inset). To our
knowledge, such a significant and pronounced increase in acceptor fluorescence has not been previously
observed in the published studies of lanthanide-dopedUCNPs [44, 45, 50, 60, 61]. In these prior works, acceptor
emissionwas either not observed orwas nominal.We attribute the clear acceptor emission increase
demonstrated infigure 4 to the shorter donor–acceptor (i.e., UCNP toROX) distance arising from the direct

Figure 3.Diagram of theDNA-mediated excitonic upconversion FRET-based switching scheme. The initial state of the functionalized
UCNP is shown at (1). The redROXa strand hybridizes to a TH region of the black ssDNA attached to theUCNPd, resulting in ‘ON’
state FRET emission (2). The green invasion strand (INV) interacts with a toehold region on the redROXa strand, removing the
acceptor from the donor (3), returning the donor to its original ‘OFF’ state. The blue restoration strand (RES) associates with a toehold
region of the INV strand (4), freeing the red ROXa strand to reattach to theUCNPd and returning the system to its ‘ON’ state.
Reversible switching is thus accomplished by repeatedly introducing the INV andRES strands (5).

Figure 4.Normalized emission spectra of functionalizedUCNPs under continuous 980 nmexcitation. Hybridization of the ROX
acceptor strand (step 2,figure 3) produced a decrease in theUCNP emission peaks in the range of 515–562nm coupledwith a
simultaneous increase in the ROX emission (red trace) in the range of 580–630 nm. Introduction of the ROX invasion strand (step 3,
figure 3) induced a reduction of FRET (blue trace). Subsequent addition of the ROX restoration strand (step 4, figure 3) increased ROX
emission (green trace), a signature of increased FRET and a demonstration of excitonic upconversion FRET switching. Spectra were
collected approximately 30 min post interactionwith the indicated strand. Interaction time iswell beyond the calculated time to half
completion of 120±40 and 500±120 s for the ‘ON’ and ‘OFF’ states, respectively, as described in the supplementarymaterial S6.
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DNA functionalizationmethod [70]. Although removal of the ROXa (step 3,figure 3) by addition of INV strand
only resulted in partial recovery of the donor emission peaks in the range of 515–562 nm to their original values,
a simultaneous significant reduction (i.e., quenching) in the 608 nmacceptor emission peakwas noted (lower
inset blue curve). The partial recovery of the donor emission peaks in the range of 515–562 nm ismost likely due
to the incomplete removal of ROXa from theUCNPd, as evidenced by the incomplete quenching of the 608 nm
acceptor emission. Analysis of the area containing the donor emission peakswas performed by integrating from
of 500 to 562 nmand revealed values consistent with expected changes (supplementarymaterial S13). The
subsequent addition of the ROX restoration strand (step 4,figure 3) returns the ROXa emission to the values of
the green curve indicated infigure 4. To demonstrate the repeatability of this switching, the ‘OFF–ON’ cycle was
iterated again resulting in spectra similar to the blue and green curves infigure 4 (raw emission spectra of all
three cycles are provided in supplementarymaterial S5).

Isothermal dynamic switching of FRETbetweenUCNPd andROXa (i.e., induced acceptor emission changes
at 608 nmas a function of time) is further highlighted infigures 5(a) and (b), which shows a series of successive
switching events. Sequential and reversible switching between ‘ON’ and ‘OFF’ states is clearly demonstrated as
evident by the saw-tooth pattern offigure 5(a), which is averaged over three trials. Stoichiometric dynamic
switchingwas performed on 30 min intervals, figure 5(b). The average time to half-completion, asmodeled by
second-order kinetics for attachment (‘ON’ state) and removal (‘OFF’ state) of the ROXa to theUCNPd, were
calculated to be 120±40 s and 500±120 s, respectively, at∼80 μMconcentrations (data provided in
supplementarymaterial S6). As noted infigure 4 and observed infigures 5(a) and (b), the ROXa emission at
608 nmdoes not return to zero in the ‘OFF’ state, which canmost likely be attributed to the incomplete removal
of the ROXa strand from theUCNPd as discussed earlier. Except for the acceptor emission data (figures 4 and 5)
inwhich the INV andRES strandswere added in 1:1 stoichiometry, the acceptor emission does not noticeably
decrease further upon application of INV strand in excess ratios (data not shown). Hence, it can be inferred that
a substantial fraction of the initially supplied ROXa is bound to theUCNPd in such amanner that it cannot be
removed by strand invasion. Incomplete invasion due to oligomer crowding and direct adsorption of the ROX
fluorophore to the surface of theUCNPdmay explainwhy the 608 nmacceptor fluorescence does not return to
zero in the switched ‘OFF’ state. Relative to the latter, we have found evidence of direct adsorption of the ROX
fluorophore, or unspecific binding, when a control experiment was performed inwhich amismatched sequence
of the ssDNAROX strandwas used and added to a solution ofUCNPdwhilemonitoring the 608 nmacceptor
emission (supplementarymaterial S13). Nonetheless, the switching results demonstrated infigures 5(a) and (b)
indicate that the toehold domains at leastmoderately retain their ability to perform the toehold-mediated
strand-displacement reactions necessary for excitonic switching.

In order to compare this excitonic upconversion FRET systemwith other publishedwork [44, 45, 50, 60, 61],
the energy conversion efficiency (Econ)was determined. TheEcon is defined as the ratio of the number of photons
emitted by the acceptor in the presence of the donor to the number of photons emitted by the donor (UCNP) in
the absence of the acceptor (fluorophore). This quantity is conveniently computed using the simple relationship:

Figure 5. (a)Dynamic 608 nmemission of theDNA functionalized donorUCNP (UCNPd) upon 980 nmexcitation via hybridization
of thefluorophore acceptor (ROXa) labeled ssDNA.Cycling of the emission intensity by switching between ‘ON’ (blue circle) and
‘OFF’ (black square) states was achieved through toehold-mediated strand-displacement of the ROXa strand. The lines between data
points are provided for clarity and error bars represent three switching trials. (b)Dilution corrected reactions kinetics fluorescence
data recorded at 608 nm. The excitationwavelengthwas 980 nm.
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fAD is the emission peak area of the fluorophore acceptor in the presence of theUCNPdonor, and fD is the
emission peak area of theUCNPdonor in the absence of thefluorophore acceptor. Datawere extracted from the
published spectra as described in supplementarymaterial S7. The resultingEcon values were calculated, as
summarized in table 1. The value ofEcon for our system is 1.6 times greater than the next highest value [59]. This
marked improvement in conversion efficiency occurs despite the reduction of spectral overlap betweenUCNPd
andROXa compared to these other systems (supplementarymaterial S8).We attribute the greaterEcon in our
system to the reduced donor–acceptor distance provided by the ssDNAdirect attachmentmethod. It is also
possible that the lowerEcon values observed for previous systems could result if the local chemical environment
produced by the attachment chemistry increases nonradiative energy losses of either the donor or acceptor
emission.

Further insight into the performance of theUCNPd –ROXa system can be obtained by considering two other
quantities: the energy transfer efficiency (Etrans) [74] of the system and the quantum efficiency (Qeff) [74–78] of
the acceptor fluorophore. To define these quantities, in addition to fD and fAD already defined, we introduce fA
and fDA, where fA is the acceptor emission peak area in the absence of theUCNPdonor and fDA is theUCNP
donor emission peak area in the presence of the acceptor. The Etrans is then given by

E
f

f
1 . 2trans

DA

D

( )= -

Etrans is thus ameasure of the relative decrease inUCNPdonorfluorescence in the presence of the acceptor,
withEtrans= 1 corresponding to complete (ideal, seefigure 2(a)) FRETbetween the donor and acceptor;
accordingly, Etrans is also occasionally referred to as the quenching efficiency [44, 74]. Assuming the decrease in
thefluorescence of the donor in the presence of the acceptor is entirely due to the transfer of those photons to the
acceptor,Qeff is then given by

Q
f f

f f
. 3eff

AD A

D DA

( )=
-

-

Qeff is ameasure of the efficiencywithwhich excitonic quanta transferred to the donor are converted into
acceptor fluorescence photons and is thus ameasure of the FRET acceptor’sfluorescence quantum yield. For the
UCNPd–ROXa system, direct excitation of the ROXa by the infrared laser used to pump theUCNPd did not
result in significantmeasurable ROXafluorescence, thuswe can reasonably assume that fA= 0 for this system
(see supplementarymaterial S9). Under these conditions, equations (1)–(3) yield:

E Q E . 4con eff trans ( )=

This decomposition ofEcon provides ameans of assessing the relative contributions to the conversion efficiency
of two separate physical effects: exciton transfer from the donor to the acceptor and fluorescence emission of the
acceptor.

A number of studies have been conducted to determine theQeff of ROX [75–78], all of which report values
within the range of 1.0±0.05 (i.e., unity quantumyield, within experimental uncertainty), indicating ROX is
highly efficient at re-emission of absorbed photons. To calculateQeff of theUCNPd–ROXa systemusing
equation (3), the donor emission peak areas from the spectra shown infigure 4 (black and red curves)were
integrated from514 to 562 nm, and the acceptor emission peak areaswere integrated from565 to 645 nm.
Althoughminimal, it was necessary to consider the attenuation of theUCNPd in the presence of ROXa. An
attenuation correction factor f

D
C( )was applied to our data prior to computingQeff andEtrans for our system to

account for free ROXabsorption, however, this could not be performed for the comparison to other published
work (supplementarymaterial S10). TheQeff of this system calculated via equation (3) (1.08±0.11) is unity
within experimental uncertainty and falls within the range of the literature values for the quantum efficiency of

Table 1.Comparison ofUCNP-fluorophore systems.

Fluorophore fD fAD Econ Reference

TAMRA 14.6 1.23 0.08 [49]
BOBO3 20.9 0.84 0.04 [44]
RhB 19.4 2.35 0.12 [60]
TAMRA 20.0 2.80 0.14 [59]
RhB 18.2 1.44 0.08 [43]
ROX 13.5 3.07 0.23 this work
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ROX. This result indicates that the excitonic coupling to theUCNP and attachment scheme adopted for ROXa

have no observable detrimental effect on theQeff of ROX.
The energy transfer efficiency (Etrans) for theUCNPd–ROXa systemwas evaluated using equation (2), where

again peak areas from514 nm to 562 nmand 565 nm to 645 nmwere used to calculate the donor and acceptor
emission, respectively. Black bars infigure 6 represent Etrans for thefirst ‘OFF–ON’ cycle evaluated for three
separate trials.

The average value ofEtrans for these three trials was 0.23±0.03 (see supplementarymaterial S11); note that
since in our systemQeff is close to unity,Etrans is essentially equal toEcon as shown in table 1. The nearly 25%
energy transfer conversion efficiency is comparable to that of otherUCNPFRET systems reported in the
literature [44, 45, 50, 60, 61]. Figure 6 also displaysEtrans evaluated for the second and third ‘OFF–ON’ cycles
(red and blue bars) for each of the three trials. The combined average value ofEtrans for all of the second and third
‘OFF–ON’ cycles is 0.07±0.03. As already indicated, not all the ROXa is removed from theUCNPd by the INV
oligomers used to transition the system from the ‘ON’ state to the ‘OFF’ state (see figure S3, supplementary
material). Hence, after the first ‘OFF–ON’ cycle, there are fewer attachment sites towhichROXa (supplementary
material S12) can bind; however these sites remain active on successive cycles as indicated by the similar Etrans
values for the two additional switching cycles (cycles 2 and 3). An estimate of the fraction of ROXa binding sites
that remain active (ra) for FRET switching is given by:

r 1 , 5a
ADoff

ADon

( )


= -

where ADon is fAD evaluated for the system in the ‘ON’ state, and ADoff is fAD evaluated for the system in the
‘OFF’ state. The averaged ra value for successive ‘OFF–ON’ cycles is 0.45±0.11.Hence, 45%of the ROXa

binding sites remain active, which is one area that can be improved upon in futurework.

4. Conclusion

Wehave demonstrated efficient and switchableDNA-mediated upconversion FRETby engineering anUCNP–
ROXdonor/acceptor excitonic system through implementing (1) a simple, one-step direct attachment of
ssDNA to hydrophobicUCNPs, and (2) a ROX acceptor-DNA strand design that exploits the ability to both
hybridize with the ssDNAbiofunctionalizedUCNPs and undergo toehold-mediated strand-displacement.
Decreased donor–acceptor distance from the direct attachment resulted in a quantum efficiency
indistinguishable fromunity and superior FRET that produced energy conversion and energy transfer
efficiencies of nearly 25%. Successive switching events were performed using toehold-mediated strand-
displacement that, although only 45%of sites were actually switching, allowed cycling of the excitonic FRET
switch’s state to be performed through three complete ‘OFF–ON’ cycles. The FRETproduced a clear quenching
of the donor emissionwith a significant simultaneous increase in acceptor emission that has yet to be fully
demonstrated in other work. In principle, the upconversion FRET scheme reported here can lead tomore
efficient artificial light harvesting systems and excitonic devices, be incorporated to enhance photovoltaic
devices, and be utilized to produce novel nanomedical assays.

Figure 6.The energy transfer efficiency Etrans of theUCNPd–ROXa system for three successive switching events observed in each of
three trials. In the initial cycle, the systembegins in the ‘OFF’ state in the absence of ROXa. The ROXa is incompletely removed by the
INVoligomerwhen restoring the system to the ‘OFF’ state in subsequent cycles. Hence, Etrans is lower for subsequent cycles because
there are fewer active attachment sites for the ROXa.
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