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Abstract

Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing
creation and transport of excitons via Forster resonant energy transfer (FRET), and subsequent charge
separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic
and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient
resulting in energy loss with each step along the pathway. Conversely, excitonic energy upconversion
via upconversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to
boost the exciton energy. Although FRET-based upconversion has been demonstrated, it suffers from
low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an upconversion
FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates
excitonic energy upconversion by nearly a factor of 2, an excited state donor to acceptor FRET
efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These
findings offer a promising path for energy upconversion in nanophotonic applications including
artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

1. Introduction

In many nanophotonic systems, excitons are funneled down an energy gradient created by an array of
fluorophores possessing successively lower excitation energies. Examples of such excitonic systems include light
harvesting antennae in higher plants [1, 2], certain bacteria [3, 4], synthetic waveguides [5, 6], switches, and logic
gates [7-9]. The energy is degraded due to losses at each step in the exciton transfer process, limiting the
performance of exciton funnels. This degradation raises the question of whether the exciton funnel performance
can be improved via an upconversion process in which two excitons combine to form a single exciton of higher
energy, thus rejuvenating the exciton energy. Indeed, nature appears to have taken this approach, as energy
upconversion has been observed in the energy transfer pathways present within the Fenna—Mathews—Olson
[10-12] complexes of natural photosynthetic systems [13, 14]. Optical upconversion also occurs in lanthanide-
doped materials such as NaYF,:Gd>", Yb**, Er**, both in bulk solid crystals and nanoparticles; however, the
upconversion process in these materials differs mechanistically from the natural upconversion phenomenon
[15, 16]. Although inherently inefficient, the efficiencies of upconversion nanoparticles (UCNPs) continue to
improve [17], which offers an opportunity to pursue energy upconversion in artificial excitonic systems
including excitonic wires, switches, and light harvesting antennae. UCNPs are being explored in the biomedical
field as alternatives or supplements to current imaging agents, bioassays, and drug delivery modalities because of
their narrow bandwidth emission, near zero autofluorescence, low toxicity, deep tissue penetrating near infrared
(NIR) excitation, and minimal photobleaching [16, 18-24]. Additionally, UCNPs are currently studied as
potential components in optoelectronic applications such as light-emitting diodes [25], fluorescent lighting
[26], telecommunications [27], security coatings [23, 24], and photovoltaic devices [28, 29]. Further
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Figure 1. Schematic illustration of optical upconversion followed by FRET for a donor (UCNP)/acceptor (fluorophore) pair. The
donor UCNP undergoes a multi-step energy transition upon low energy near infrared (NIR) excitation as detailed in various review
publications [15-17, 27, 33, 41]. Upon relaxation to the ground state, the UCNP non-radiatively transfers its energy via dipole—dipole
interactions (FRET) to an acceptor molecule (fluorophore). This process results in emission of a photon from the acceptor.

development of UCNP systems may provide significant advancements in these nanomedicine and
optoelectronics applications.

Combining optical upconversion and Forster resonance energy transfer (FRET) can create new hybrid
UCNP systems affording production of novel bioanalytical tools [30] and improve device functionality in
optoelectronics applications [31, 32]. Upconversion in lanthanide-doped nanoparticles is a nonlinear optical
phenomenon achieved through the excitation of rare earth ions by two or more lower energy NIR photons,
resulting in multistep electronic transitions followed by higher energy visible photon emission [27, 33, 34].
FRET is excitonic energy transfer on the nanometer scale between donor and acceptor molecules mediated by
dipole—dipole coupling [35, 36]. The acceptor molecule need not be a fluorophore, and the energy transferred
need not be radiated as fluorescence [37—39]. Though there are multiple ways in which combined upconversion
and FRET systems can be constructed, here the focus will be on FRET between a UCNP donor and an acceptor
fluorophore. During FRET, the fluorescence from the donor UCNP decreases (i.e., a quenching effect) with a
simultaneous increase in the acceptor molecule’s fluorescence as the donor—acceptor pair are brought into
proximity (i.e., a transfer effect) [40]. A simple schematic of the upconversion to FRET process is provided in
figure 1, in which the sensitizer—activator complex provides the two photon absorption pathway within the
UCNP [15-17, 33, 41], thereby initiating the FRET cascade from the UCNP to the fluorophore. In this report, we
demonstrate the upconversion of incident infrared photons in NaYF,:Gd*>", Yb*>+ Er’™ nanoparticles followed
by excitonic transfer (i.e., FRET) to fluorophores that emit photons in the visible region, that can be dynamically
switched ‘ON” and ‘OFF’. Switching is accomplished via DNA hybridization and toehold-mediated DNA
strand-displacement reactions [42], in which auxiliary DNA oligomers attached to the UCNPs are used to
control subsequent reversible binding of DNA oligomers carrying the fluorophores to the nanoparticle.

Spectral overlap between the donor emission and the acceptor absorption and donor—acceptor distance are
the two key components required for efficient FRET. In an ideal FRET process, such as that depicted in
figure 2(a), complete nonradiative energy transfer between the donor and acceptor occurs (dashed curve). This
energy transfer can be maximized by optimizing the spectral overlap and reducing the distance between the
donor and acceptor to maximize FRET. More typically, competing parasitic processes such as bleed-through,
cross-talk, internal energy loss, and donor emission into free space decrease FRET efficiency (solid curve,
figure 2(a)). As defined by Berney and Danuser [43], cross-talk occurs when the donor emission spectrum
overlaps that of the acceptor emission, thereby artificially increasing the apparent acceptor emission signal.
Cross-talk [21-23] can be virtually eliminated through the careful selection of the fluorophore acceptor such
that its emission does not overlap that of the donor. Conversely, bleed-through [43] involves undesired
excitation of the acceptor molecule at the donor excitation wavelength. An advantage to UCNP-fluorophore
FRET systems, bleed-through is eliminated completely because the excitation wavelength of the UCNP donor
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Figure 2. (a) Schematic of fluorescence emission spectra demonstrating: donor emission (1) without an acceptor present and thus zero
FRET, (dotted line) or (2) in the presence of an acceptor, whereby the FRET process quenches the donor emission (),) resulting in
acceptor emission (\3) as occurs in typical FRET (solid line) and varies depending on FRET efficiency. If the FRET process approaches
100% transfer efficiency, and the acceptor has a fluorescence quantum yield of unity, near total quenching of the donor occurs and
nearly 100% of the quanta absorbed by the donor are emitted as fluorescence photons by the acceptor (ideal FRET, dashed line). (b)
Spectral overlap of the UCNP and ROX fluorophore. The emission spectrum of the NaYF, nanoparticle co-doped with Gd*>*, Yb* ¥,
Er’* (black solid line) overlaps the shoulder of the ROX absorbance spectrum (green dashed line). The emission spectrum of ROX,
which has minimal overlap with that of the UNCP emission, is also shown (orange solid line).

lies in the NIR spectrum, while the acceptor fluorophore excitation is in the visible. As a result, the incident
UCNP excitation photons do not have sufficient energy to directly excite the acceptor fluorophore.

Figure 2(b) shows the relevant absorption and emission spectra of the FRET system components used in this
study (i.e., spectral overlap). This system is composed of an upconverting NaYF, nanoparticle donor doped with
Gd**, Yb’*, Er’* and a 6-carboxy-X-rhodamine (ROX) fluorophore acceptor bound to the UCNP viaa
hybridized DNA tether. Nanoparticle information, DNA sequences, and fluorophore details are provided in
supplementary material S1. The low wavelength absorbance shoulder of the ROX acceptor coincides well with
the emission peaks of the UCNP donor in the range of 515-562 nm, which provides adequate spectral overlap
for FRET. Furthermore, cross-talk is minimized as the acceptor emission peak lies in a longer wavelength region
than the donor emission resulting in virtually no cross-talk at the 608 nm peak ROX acceptor emission
wavelength. It should be noted that some attenuation of the UCNP fluorescence in the range of 515-562 nm
occurs when ROX is introduced, which will be discussed later. There is also potential cross-talk between the
donor and acceptor in the 645-675 nm range; however, this spectral region falls well outside the spectral overlap
region and does not contribute to the FRET. Thus, the unique optical properties of the UCNP donor and choice
of ROX as the acceptor allow clear observation of donor quenching and acceptor emission in the spectral data.

There have been several reports of UCNP-fluorophore FRET systems [44—49], which have also been referred
to as energy transfer [18, 50] or luminescence resonance energy transfer systems [51-56]. To the best of our
knowledge, published investigations of UCNP-fluorophore FRET systems have primarily demonstrated one
aspect of the FRET process, namely donor quenching [57-60], accompanied by a nominal increase in acceptor
molecule emission suggesting an inefficient FRET process. In order for potential optoelectronic applications of
UCNP-fluorphore FRET-based constructs, realization of higher efficiency FRET (figure 2(a)), in which both
donor quenching and acceptor emission are significant, is an essential challenge that must be addressed.
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2. Materials and methods

To address the primary challenge of hydrophobicity of as-synthesized lanthanide-doped UCNPs,
biofunctionalization techniques [18] have been used such as PEGylation [61], oxidation [50], phospholipid
coating [44], recombinant antibody fragment coating [46], aminoethyl dihydrogen phosphate [49], citrate
capping [60], polyacrylic acid [62], streptavidin coating [53, 63], and silica shell growth [45, 64, 65]. These UCNP
modification methods enable the use of acceptor molecules currently employed in the FRET process; however,
these techniques potentially increase the UCNP dimensions [44] resulting in greater donor—acceptor pair
separation distances, which decreases the FRET efficiency[58, 66]. Additionally, typical biofunctionalization
methods, such as covalent lectin binding [57], covalent biotinylation [49, 50, 53, 63, 64], fluorophore
incorporation within hydrophilic coatings [44, 61, 67, 68], amino group conjugation [45, 58], stain intercalation
[52], covalent DNA immobilization [60], and covalent sulthydryl linkage [69] involve multi-step processes.
These multi-step biofunctionalization processes reduce overall yield and add complications to the UCNP
preparation. Recently, a simple single-step ligand exchange method was reported by Li et al [70], in which single
stranded DNA (ssDNA) was directly attached to the UCNP in a one step process, producing hydrophilic,
monodispersed UCNPs for salt concentrations ranging from 5 to 100 mM. Subsequently, they were able to
selectively attach a variety of ssDNA functionalized particles such as gold nanoparticles (AuNPs), Cy3
fluorophores, and cell targeting aptamers via Watson—Crick [71] hybridization to the available ssDNA. We
believe this ssDNA functionalization method is advantageous for UCNP-based excitonic FRET because not only
is it a single-step process, but additionally it reduces the donor—acceptor pair separation distance, thereby
enhancing their FRET efficiency. Moreover, ssDNA functionalization enables the modulation of FRET through
toehold-mediated strand-displacement reactions [42] when invasion (INV) and restoration (RES) ssDNA
strands are introduced to perform UCNP-based FRET excitonic switching.

To explore the possibility of DNA-mediated UCNP-fluorophore FRET switching, four distinct challenges
needed to be addressed: (i) rendering the hydrophobic UCNPs hydrophilic, (ii) functionalizing the hydrophilic
UCNPs using the ssDNA biofunctionalization method, (iii) devising a FRET system, and (iv) designing a strand
displacement sequence. Oleic acid capped, hydrophobic UCNPs were rendered both hydrophilic and
functionalized with ssDNA, denoted as UCNP;, via the one step ssDNA biofunctionalization method
demonstrated by Li et al [70], as described in the supplementary material S2. In addition to imparting
hydrophilicity, the ssDNA on the UNCP surface serve as tethers to which complementary ROX-functionalized
ssDNA oligomers can hybridize. ROX was chosen as the acceptor because it can be readily attached to ssDNA
and it provides adequate spectral overlap with the donor as discussed previously (figure 2(b)). The base
sequences for the DNA strands involved in toehold-mediated strand displacement were designed using
UNIQUIMER [72] software. UNIQUIMER employs random ssDNA sequence generation combined with
parameters to control base pair (bp) length, complementarity, and C-G content of each strand. Thermodynamic
analysis using the web-based NUPACK [73] program determined the free energy changes as each DNA oligomer
(ROX, INV, or RES) hybridizes to its complement.

The scheme that was implemented to control the FRET between ssDNA functionalized UCNP;and the ROX
fluorophore is illustrated in figure 3. The ROX fluorophore is covalently attached to a ssDNA oligomer
complementary to a portion of the UCNP,;ssDNA sequence; this ROX-DNA pair is referred to as ROX,,.

Figure 3 (1) shows the UCNP,;in the ‘OFF’ state where no ROX emission is observed. Switching to the ‘ON’ state
occurs when the ROX,, hybridizes to the tether on the UCNP,;, as shown in (2). Here, the hybridization of the
ROX,, strand to a 10 nucleotide (nt) toehold binding region (TH) on the UCNP,, tether holds the ROX,,
fluorophore in proximity to the UCNP,;, enabling FRET and the consequent ROX emission. Switching to the
‘OFF state is accomplished by displacement of the ROX,, from the donor with the introduction of a 22 nt
invasion (INV) strand (3). Finally, restoration of the ROX,, strand to the UCNP,;, and thus reestablishing the
‘ON’ state, is achieved by addition of a 17 nt restoration (RES) strand displacing ROX,, by preferentially
hybridizing with the INV strand (4). The process can be iterated to reversibly switch the system between the ‘ON’
and ‘OFF states (5). For the experiments described in this paper, the concentration of available DNA tethers was
estimated to be ~4 M using the procedure described in supplementary material S2.3.

3. Results and discussion

The state of the FRET system was monitored in two ways after each switching event via fluorescence
spectroscopy under conditions of continuous 980 nm excitation (instrumentation details provided in
supplementary material S3). The emission intensity of the donor and the acceptor were acquired as a function of
wavelength and time; the latter was performed at the peak emission wavelength of the ROX acceptor (608 nm).
Figure 4 shows the normalized fluorescence spectra obtained for the ‘OFF and ‘ON’ states before and after
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Figure 3. Diagram of the DNA-mediated excitonic upconversion FRET-based switching scheme. The initial state of the functionalized
UCNP is shown at (1). The red ROX,, strand hybridizes to a TH region of the black ssDNA attached to the UCNP, resulting in ‘ON’
state FRET emission (2). The green invasion strand (INV) interacts with a toehold region on the red ROX,, strand, removing the
acceptor from the donor (3), returning the donor to its original ‘OFF’ state. The blue restoration strand (RES) associates with a toehold
region of the INV strand (4), freeing the red ROX,, strand to reattach to the UCNP,; and returning the system to its ‘ON’ state.
Reversible switching is thus accomplished by repeatedly introducing the INV and RES strands (5).
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Figure 4. Normalized emission spectra of functionalized UCNPs under continuous 980 nm excitation. Hybridization of the ROX
acceptor strand (step 2, figure 3) produced a decrease in the UCNP emission peaks in the range of 515-562nm coupled with a
simultaneous increase in the ROX emission (red trace) in the range of 580—-630 nm. Introduction of the ROX invasion strand (step 3,
figure 3) induced a reduction of FRET (blue trace). Subsequent addition of the ROX restoration strand (step 4, figure 3) increased ROX
emission (green trace), a signature of increased FRET and a demonstration of excitonic upconversion FRET switching. Spectra were
collected approximately 30 min post interaction with the indicated strand. Interaction time is well beyond the calculated time to half
completion of 120 + 40 and 500 £ 120 s for the ‘ON’ and ‘OFF’ states, respectively, as described in the supplementary material S6.

addition of INV and RES strands to induce one cycle of excitonic switching. The normalization process is
described further in supplementary material S4. As a control, the initial emission spectrum of the UCNP,; in the
absence of ROX,, is shown as the black curve in figure 4.

The red curve in figure 4 shows that once the ROX,, strand attaches to the UCNP,;, a clear decrease in the
donor emission peaks in the range of 515-562 nm and a concomitant increase in the acceptor emission in the
range of 580—630 nm, indicating FRET from the donor (upper inset) to the acceptor (lower inset). To our
knowledge, such a significant and pronounced increase in acceptor fluorescence has not been previously
observed in the published studies of lanthanide-doped UCNPs [44, 45, 50, 60, 61]. In these prior works, acceptor
emission was either not observed or was nominal. We attribute the clear acceptor emission increase
demonstrated in figure 4 to the shorter donor—acceptor (i.e., UCNP to ROX) distance arising from the direct
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Figure 5. (a) Dynamic 608 nm emission of the DNA functionalized donor UCNP (UCNP,;) upon 980 nm excitation via hybridization
of the fluorophore acceptor (ROX,) labeled ssDNA. Cycling of the emission intensity by switching between ‘ON’ (blue circle) and
‘OFF (black square) states was achieved through toehold-mediated strand-displacement of the ROX,, strand. The lines between data
points are provided for clarity and error bars represent three switching trials. (b) Dilution corrected reactions kinetics fluorescence
data recorded at 608 nm. The excitation wavelength was 980 nm.

DNA functionalization method [70]. Although removal of the ROX,, (step 3, figure 3) by addition of INV strand
only resulted in partial recovery of the donor emission peaks in the range of 515-562 nm to their original values,
asimultaneous significant reduction (i.e., quenching) in the 608 nm acceptor emission peak was noted (lower
inset blue curve). The partial recovery of the donor emission peaks in the range of 515-562 nm is most likely due
to the incomplete removal of ROX,, from the UCNP,;, as evidenced by the incomplete quenching of the 608 nm
acceptor emission. Analysis of the area containing the donor emission peaks was performed by integrating from
of 500 to 562 nm and revealed values consistent with expected changes (supplementary material S13). The
subsequent addition of the ROX restoration strand (step 4, figure 3) returns the ROX,, emission to the values of
the green curve indicated in figure 4. To demonstrate the repeatability of this switching, the ‘OFF-ON’ cycle was
iterated again resulting in spectra similar to the blue and green curves in figure 4 (raw emission spectra of all
three cycles are provided in supplementary material S5).

Isothermal dynamic switching of FRET between UCNP,;and ROX,, (i.e., induced acceptor emission changes
at 608 nm as a function of time) is further highlighted in figures 5(a) and (b), which shows a series of successive
switching events. Sequential and reversible switching between ‘ON’ and ‘OFF’ states is clearly demonstrated as
evident by the saw-tooth pattern of figure 5(a), which is averaged over three trials. Stoichiometric dynamic
switching was performed on 30 min intervals, figure 5(b). The average time to half-completion, as modeled by
second-order kinetics for attachment (‘ON’ state) and removal (‘OFF’ state) of the ROX, to the UCNP,;, were
calculated tobe 120 + 40 sand 500 £ 120 s, respectively, at ~80 M concentrations (data provided in
supplementary material S6). As noted in figure 4 and observed in figures 5(a) and (b), the ROX,, emission at
608 nm does not return to zero in the ‘OFF’ state, which can most likely be attributed to the incomplete removal
of the ROX,, strand from the UCNP; as discussed earlier. Except for the acceptor emission data (figures 4 and 5)
in which the INV and RES strands were added in 1:1 stoichiometry, the acceptor emission does not noticeably
decrease further upon application of INV strand in excess ratios (data not shown). Hence, it can be inferred that
asubstantial fraction of the initially supplied ROX,, is bound to the UCNP,; in such a manner that it cannot be
removed by strand invasion. Incomplete invasion due to oligomer crowding and direct adsorption of the ROX
fluorophore to the surface of the UCNP,; may explain why the 608 nm acceptor fluorescence does not return to
zero in the switched ‘OFF’ state. Relative to the latter, we have found evidence of direct adsorption of the ROX
fluorophore, or unspecific binding, when a control experiment was performed in which a mismatched sequence
of the ssDNA ROX strand was used and added to a solution of UCNP,; while monitoring the 608 nm acceptor
emission (supplementary material S13). Nonetheless, the switching results demonstrated in figures 5(a) and (b)
indicate that the toehold domains at least moderately retain their ability to perform the toehold-mediated
strand-displacement reactions necessary for excitonic switching.

In order to compare this excitonic upconversion FRET system with other published work [44, 45, 50, 60, 61],
the energy conversion efficiency (E.,,) was determined. The E_,,, is defined as the ratio of the number of photons
emitted by the acceptor in the presence of the donor to the number of photons emitted by the donor (UCNP) in
the absence of the acceptor (fluorophore). This quantity is conveniently computed using the simple relationship:
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Table 1. Comparison of UCNP-fluorophore systems.

Fluorophore fo fab Econ Reference
TAMRA 14.6 1.23 0.08 [49]
BOBO3 20.9 0.84 0.04 [44]
RhB 19.4 2.35 0.12 [60]
TAMRA 20.0 2.80 0.14 [59]
RhB 18.2 1.44 0.08 [43]
ROX 13.5 3.07 0.23 this work
fap
Econ = —> (1)
fo

fap is the emission peak area of the fluorophore acceptor in the presence of the UCNP donor, and fj, is the
emission peak area of the UCNP donor in the absence of the fluorophore acceptor. Data were extracted from the
published spectra as described in supplementary material S7. The resulting E,,, values were calculated, as
summarized in table 1. The value of E,,,, for our system is 1.6 times greater than the next highest value [59]. This
marked improvement in conversion efficiency occurs despite the reduction of spectral overlap between UCNP,
and ROX,, compared to these other systems (supplementary material S8). We attribute the greater E,, in our
system to the reduced donor—acceptor distance provided by the ssDNA direct attachment method. It is also
possible that the lower E,,, values observed for previous systems could result if the local chemical environment
produced by the attachment chemistry increases nonradiative energy losses of either the donor or acceptor
emission.

Further insight into the performance of the UCNP,;—ROX,, system can be obtained by considering two other
quantities: the energy transfer efficiency (Ey;ans) [74] of the system and the quantum efficiency (Q.g) [74—78] of
the acceptor fluorophore. To define these quantities, in addition to fp and fyp already defined, we introduce f
and fpa, where f, is the acceptor emission peak area in the absence of the UCNP donor and fp4 is the UCNP
donor emission peak area in the presence of the acceptor. The E,,; is then given by

Jou
fo
E\1ans is thus a measure of the relative decrease in UCNP donor fluorescence in the presence of the acceptor,
with E,,s = 1 corresponding to complete (ideal, see figure 2(a)) FRET between the donor and acceptor;
accordingly, E,.., is also occasionally referred to as the quenching efficiency [44, 74]. Assuming the decrease in

the fluorescence of the donor in the presence of the acceptor is entirely due to the transfer of those photons to the
acceptor, Qs then given by

Evans =1 — )

Qu= Sl ®)

fD - fDA
Q.fris a measure of the efficiency with which excitonic quanta transferred to the donor are converted into
acceptor fluorescence photons and is thus a measure of the FRET acceptor’s fluorescence quantum yield. For the
UCNP,;-ROX,, system, direct excitation of the ROX, by the infrared laser used to pump the UCNP, did not
result in significant measurable ROX,, fluorescence, thus we can reasonably assume that f, = 0 for this system
(see supplementary material S9). Under these conditions, equations (1)—(3) yield:

Econ = Qetf Etrans- (4)

This decomposition of E,,, provides a means of assessing the relative contributions to the conversion efficiency
of two separate physical effects: exciton transfer from the donor to the acceptor and fluorescence emission of the
acceptor.

A number of studies have been conducted to determine the Q.¢of ROX [75-78], all of which report values
within the range of 1.0 &+ 0.05 (i.e., unity quantum yield, within experimental uncertainty), indicating ROX is
highly efficient at re-emission of absorbed photons. To calculate Q.¢of the UCNP,;—ROX,, system using
equation (3), the donor emission peak areas from the spectra shown in figure 4 (black and red curves) were
integrated from 514 to 562 nm, and the acceptor emission peak areas were integrated from 565 to 645 nm.
Although minimal, it was necessary to consider the attenuation of the UCNP, in the presence of ROX,.. An
attenuation correction factor (f g) was applied to our data prior to computing Q.grand Ey.,,s for our system to
account for free ROX absorption, however, this could not be performed for the comparison to other published
work (supplementary material S10). The Qg of this system calculated via equation (3) (1.08 £ 0.11) is unity
within experimental uncertainty and falls within the range of the literature values for the quantum efficiency of
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Figure 6. The energy transfer efficiency Ey;,,s of the UCNP,;—ROX,, system for three successive switching events observed in each of
three trials. In the initial cycle, the system begins in the ‘OFF’ state in the absence of ROX,.. The ROX,, is incompletely removed by the
INV oligomer when restoring the system to the ‘OFF’ state in subsequent cycles. Hence, Ei,,y is lower for subsequent cycles because
there are fewer active attachment sites for the ROX,,.

ROX. This result indicates that the excitonic coupling to the UCNP and attachment scheme adopted for ROX,,
have no observable detrimental effect on the Q.¢of ROX.

The energy transfer efficiency (E,s) for the UCNP,;—ROX,, system was evaluated using equation (2), where
again peak areas from 514 nm to 562 nm and 565 nm to 645 nm were used to calculate the donor and acceptor
emission, respectively. Black bars in figure 6 represent Ey.,,,s for the first OFF-ON’ cycle evaluated for three
separate trials.

The average value of E,,,s for these three trials was 0.23 £ 0.03 (see supplementary material S11); note that
since in our system Q. is close to unity, Ey;.n is essentially equal to E,,, as shown in table 1. The nearly 25%
energy transfer conversion efficiency is comparable to that of other UCNP FRET systems reported in the
literature [44, 45, 50, 60, 61]. Figure 6 also displays E;,,s evaluated for the second and third ‘OFF-ON’ cycles
(red and blue bars) for each of the three trials. The combined average value of E, ., for all of the second and third
‘OFF-ON’ cycles is 0.07 = 0.03. As already indicated, not all the ROX,, is removed from the UCNP,; by the INV
oligomers used to transition the system from the ‘ON’ state to the ‘OFF state (see figure S3, supplementary
material). Hence, after the first OFF-ON’ cycle, there are fewer attachment sites to which ROX,, (supplementary
material S12) can bind; however these sites remain active on successive cycles as indicated by the similar Ei, s
values for the two additional switching cycles (cycles 2 and 3). An estimate of the fraction of ROX,, binding sites
that remain active (r,) for FRET switching is given by:

=1 fADoff) (5)
fADon

where Fapon 1S fap evaluated for the system in the ‘ON’ state, and Fapog is fap evaluated for the system in the
‘OFF state. The averaged r, value for successive ‘OFF-ON’ cycles is 0.45 £ 0.11. Hence, 45% of the ROX,
binding sites remain active, which is one area that can be improved upon in future work.

4, Conclusion

We have demonstrated efficient and switchable DNA-mediated upconversion FRET by engineering an UCNP—
ROX donor/acceptor excitonic system through implementing (1) a simple, one-step direct attachment of
ssDNA to hydrophobic UCNPs, and (2) a ROX acceptor-DNA strand design that exploits the ability to both
hybridize with the ssDNA biofunctionalized UCNPs and undergo toehold-mediated strand-displacement.
Decreased donor—acceptor distance from the direct attachment resulted in a quantum efficiency
indistinguishable from unity and superior FRET that produced energy conversion and energy transfer
efficiencies of nearly 25%. Successive switching events were performed using toehold-mediated strand-
displacement that, although only 45% of sites were actually switching, allowed cycling of the excitonic FRET
switch’s state to be performed through three complete ‘OFF-ON’ cycles. The FRET produced a clear quenching
of the donor emission with a significant simultaneous increase in acceptor emission that has yet to be fully
demonstrated in other work. In principle, the upconversion FRET scheme reported here can lead to more
efficient artificial light harvesting systems and excitonic devices, be incorporated to enhance photovoltaic
devices, and be utilized to produce novel nanomedical assays.
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