185 research outputs found

    Biology of Surgeonfish Acanthurus-nigrofuscus with emphasis on changeover in diet and annual gonadal cycles

    Get PDF
    A 3 yr study was conducted on the feeding biology and reproductive strategies of Acanthurus nigrofuscus (Acanthuridae, Teleostei) found along the coral reefs of the Gulf of Aqaba and forming there the major biomass of algivorous fish. The diet of this surgeonfish is based on algae selected from turf communities growing on subtidal rocky surfaces. At some sites A. nigrofuscus form schools that migrate daily from nocturnal refuges in coral reefs to foraging sites on the intertidal, covering distances of 500 to 600 m. During summer the main food items are brown and red algae; in winter, lush green algae. This changeover appears to provide the food-base for accumulation of fat and recrudescence of gonadal activity initiating in March-Apnl. Reproduction occurs in large schools of 2000 to 2500 fish and on selected sites, continuing from May to September. Spawning occurs daily from 1800 to 1830 h, after which the fish depart for their night refuges. Peak of gonadal activity is in July-August, after whch an increase of pre- and postovulatory atretic bodes is prominent. In female post-spawned gonads, cysts of spermatogonia appear and remain until renewed normal activity in February-March. Histological evidence and possible explanation of this phenomenon are provided

    Representation of complex vocalizations in the Lusitanian toadfish auditory system: evidence of fine temporal, frequency and amplitude discrimination

    Get PDF
    Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene

    The Potential of Current- and Wind-Driven Transport for Environmental Management of the Baltic Sea

    Get PDF
    The ever increasing impact of the marine industry and transport on vulnerable sea areas puts the marine environment under exceptional pressure and calls for inspired methods for mitigating the impact of the related risks. We describe a method for preventive reduction of remote environmental risks caused by the shipping and maritime industry that are transported by surface currents and wind impact to the coasts. This method is based on characterizing systematically the damaging potential of the offshore areas in terms of potential transport to vulnerable regions of an oil spill or other pollution that has occurred in a particular area. The resulting maps of probabilities of pollution to be transported to the nearshore and the time it takes for the pollution to reach the nearshore are used to design environmentally optimized fairways for the Gulf of Finland, Baltic Proper, and south-western Baltic Se

    Progress in physical oceanography of the Baltic Sea during the 2003-2014 period

    Get PDF
    We review progress in Baltic Sea physical oceanography (including sea ice and atmosphere-land interactions) and Baltic Sea modelling, focusing on research related to BALTEX Phase II and other relevant work during the 2003-2014 period. The major advances achieved in this period are: Meteorological databases are now available to the research community, partly as station data, with a growing number of freely available gridded datasets on decadal and centennial time scales. The free availability of meteorological datasets supports the development of more accurate forcing functions for Baltic Sea models. In the last decade, oceanographic data have become much more accessible and new important measurement platforms, such as FerryBoxes and satellites, have provided better temporally and spatially resolved observations. Our understanding of how large-scale atmospheric circulation affects the Baltic Sea climate, particularly in winter, has improved. Internal variability is strong illustrating the dominant stochastic behaviour of the atmosphere. The heat and water cycles of the Baltic Sea are better understood. The importance of surface waves in air-sea interaction is better understood, and Stokes drift and Langmuir circulation have been identified as likely playing an important role in surface water mixing in sea water. We better understand sea ice dynamics and thermodynamics in the coastal zone where sea ice interaction between land and sea is crucial. The Baltic Sea's various straits and sills are of increasing interest in seeking to understand water exchange and mixing. There has been increased research into the Baltic Sea coastal zone, particularly into upwelling, in the past decade. Modelling of the Baltic Sea-North Sea system, including the development of coupled land-sea-atmosphere models, has improved. Despite marked progress in Baltic Sea research over the last decade, several gaps remain in our knowledge and understanding. The current understanding of salinity changes is limited, and future projections of salinity evolution are uncertain. In addition, modelling of the hydrological cycle in atmospheric climate models is severely biased. More detailed investigations of regional precipitation and evaporation patterns (including runoff), atmospheric variability, highly saline water inflows, exchange between sub-basins, circulation, and especially turbulent mixing are still needed. Furthermore, more highly resolved oceanographic models are necessary. In addition, models that incorporate more advanced carbon cycle and ecosystem descriptions and improved description of water-sediment interactions are needed. There is also a need for new climate projections and simulations with improved atmospheric and oceanographic coupled model systems. These and other research challenges are addressed by the recently formed Baltic Earth research programme, the successor of the BALTEX programme, which ended in 2013. Baltic Earth will treat anthropogenic changes and impacts together with their natural drivers. Baltic Earth will serve as a network for earth system sciences in the region, following in the BALTEX tradition but in a wider context. (C) 2014 The Authors. Published by Elsevier Ltd.Peer reviewe

    Transport dynamics in a complex coastal archipelago

    Get PDF
    The Archipelago Sea (in the Baltic Sea) is characterised by thousands of islands of various sizes and steep gradients of the bottom topography. Together with the much deeper Åland Sea, the Archipelago Sea acts as a pathway to the water exchange between the neighbouring basins, Baltic proper and Bothnian Sea. We studied circulation and water transports in the Archipelago Sea using a new configuration of the NEMO 3D hydrodynamic model that covers the Åland Sea–Archipelago Sea region with a horizontal resolution of around 500 m. The results show that currents are steered by the geometry of the islands and straits and the bottom topography. Currents are highest and strongly aligned in the narrow channels in the northern part of the area, with the directions alternating between south and north. In more open areas, the currents are weaker with wider directional distribution. During our study period of 2013–2017, southward currents were more frequent in the surface layer. In the bottom layer, in areas deeper than 25 m, northward currents dominated in the southern part of the Archipelago Sea, while in the northern part southward and northward currents were more evenly represented. Due to the variation in current directions, both northward and southward transports occur. During our study period, the net transport in the upper 20 m layer was southward. Below 20 m depth, the net transport was southward at the northern edge and northward at the southern edge of the Archipelago Sea. There were seasonal and inter-annual variations in the transport volumes and directions in the upper layer. Southward transport was usually largest in spring and summer months, and northward transport was largest in autumn and winter months. The transport dynamics in the Archipelago Sea show different variabilities in the north and south. A single transect cannot describe water transport through the whole area in all cases. Further studies on the water exchange processes between the Baltic proper and the Bothnian Sea through the Archipelago Sea would benefit from using a two-way nested model set-up for the region.</p

    Periodontal conditions and incident dementia: a nationwide Swedish cohort study

    Get PDF
    Background Periodontal disease has been proposed as a putative etiological factor for dementia. The aim of this investigation was to compare the incidence of dementia in individuals with or without deep probing pocket depths (DPPD), serving as a proxy for periodontitis. Methods In this cohort study, conducted in Sweden, we identified 7992 individuals with DPPD and 29,182 matched individuals without DPPD (non-DPPD), using the Swedish Quality Registry for Caries and Periodontal Diseases (SKaPa). The two groups were followed for incident dementia (mean follow-up time was 7.6 years) based on data from the Swedish Dementia Registry (SveDem). The exposure-outcome relationship was explored by applying the Royston-Parmar (RP) flexible parametric survival model. Results The incidence of dementia in the two groups was similar. In the DPPD group 137 (1.7%) developed dementia and 470 (1.6%) in the non-DPPD group. The incidence rate of dementia was estimated to be 2.3 per 1000 person-years (95% confidence interval [CI] 1.9 to 2.7) in the DPPD group and 2.1 per 1000 person-years (95% CI 1.9 to 2.3) in the non-DPPD group. The RP model disclosed no association between DPPD and dementia incidence after controlling for potential confounders (the exponentiated coefficient was estimated to 1.13 [95% CI = 0.39 to 3.24]). Conclusion In this sample, no association was revealed between deep probing pocket depths and the incidence of dementia.Peer reviewe

    Ctenophore population recruits entirely through larval reproduction in the central Baltic Sea

    Get PDF
    The comb jelly Mertensia ovum, widely distributed in Arctic regions, has recently been discovered in the northern Baltic Sea. We show that M. ovum also exists in the central Baltic but that the population consists solely of small-sized larvae (less than 1.6 mm). Despite the absence of adults, eggs were abundant. Experiments revealed that the larvae were reproductively active. Egg production and anticipated mortality rates suggest a self-sustaining population. This is the first account of a ctenophore population entirely recruiting through larval reproduction (paedogenesis). We hypothesize that early reproduction is favoured over growth to compensate for high predation pressure

    CPPsite: a curated database of cell penetrating peptides

    Get PDF
    Delivering drug molecules into the cell is one of the major challenges in the process of drug development. In past, cell penetrating peptides have been successfully used for delivering a wide variety of therapeutic molecules into various types of cells for the treatment of multiple diseases. These peptides have unique ability to gain access to the interior of almost any type of cell. Due to the huge therapeutic applications of CPPs, we have built a comprehensive database ‘CPPsite’, of cell penetrating peptides, where information is compiled from the literature and patents. CPPsite is a manually curated database of experimentally validated 843 CPPs. Each entry provides information of a peptide that includes ID, PubMed ID, peptide name, peptide sequence, chirality, origin, nature of peptide, sub-cellular localization, uptake efficiency, uptake mechanism, hydrophobicity, amino acid frequency and composition, etc. A wide range of user-friendly tools have been incorporated in this database like searching, browsing, analyzing, mapping tools. In addition, we have derived various types of information from these peptide sequences that include secondary/tertiary structure, amino acid composition and physicochemical properties of peptides. This database will be very useful for developing models for predicting effective cell penetrating peptides

    Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 (2009): 375-384, doi:10.1007/s00359-009-0415-x.Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1125-1250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272-05-0395)

    Ribonucleotide reductase inhibitors suppress SAMHD1 ara‐CTPase activity enhancing cytarabine efficacy

    Get PDF
    The deoxycytidine analogue cytarabine (ara‐C) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits ara‐C efficacy by hydrolysing the active triphosphate metabolite ara‐CTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1‐mediated barrier to ara‐C efficacy in primary blasts and mouse models of AML, displaying SAMHD1‐dependent synergy with ara‐C. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 ara‐CTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of ara‐C and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML
    corecore