549 research outputs found

    Metal-Insulator Transition in a Generalized Hubbard Model with Correlated Hopping at Half-Filling

    Get PDF
    In the present paper metal-insulator transition is studied in a generalized Hubbard model with correlated hopping at half-filling and zero temperature. Single-particle Green function and energy spectrum of electron system are calculated. The expressions for energy gap width and the concentration of polar states (holes or doublons) are obtained. The conditions for metallic and insulating states are found.Comment: 11 pages, 2 eps figures, Latex 2.09, submitted to Phys. Stat. Sol. (B

    The three-dimensional structure of the Eta Carinae Homunculus

    Get PDF
    We investigate, using the modeling code SHAPE, the three-dimensional structure of the bipolar Homunculus nebula surrounding Eta Carinae, as mapped by new ESO VLT/X-Shooter observations of the H2 λ=2.12125\lambda=2.12125 micron emission line. Our results reveal for the first time important deviations from the axisymmetric bipolar morphology: 1) circumpolar trenches in each lobe positioned point-symmetrically from the center and 2) off-planar protrusions in the equatorial region from each lobe at longitudinal (~55 degrees) and latitudinal (10-20 degrees) distances from the projected apastron direction of the binary orbit. The angular distance between the protrusions (~110 degrees) is similar to the angular extent of each polar trench (~130 degrees) and nearly equal to the opening angle of the wind-wind collision cavity (~110 degrees). As in previous studies, we confirm a hole near the centre of each polar lobe and no detectable near-IR H2 emission from the thin optical skirt seen prominently in visible imagery. We conclude that the interaction between the outflows and/or radiation from the central binary stars and their orientation in space has had, and possibly still has, a strong influence on the Homunculus. This implies that prevailing theoretical models of the Homunculus are incomplete as most assume a single star origin that produces an axisymmetric nebula. We discuss how the newly found features might be related to the Homunculus ejection, the central binary and the interacting stellar winds. We also include a 3D printable version of our Homunculus model.Comment: 14 pages, 7 color figures, 1 interactive 3D figure (Figure 5, requires Adobe Reader), published in MNRAS. A 3D printable version of our Homunculus model can be downloaded from http://svs.gsfc.nasa.gov/vis/a010000/a011500/a011568/Eta_Car_Homunuculus_3D_model.zip or from the 'Supporting Information' link in the electronic version of the MNRAS articl

    Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71

    Get PDF
    To better understand the LBV phenomenon, we analyze multi-epoch and multi-wavelength spectra and photometry of R71. Pre-outburst spectra are analyzed with the radiative transfer code CMFGEN to determine the star's fundamental stellar parameters. During quiescence, R71 has an effective temperature of Teff=15500 KT_\mathrm{{eff}} = 15\,500~K and a luminosity of log(L/L)(L_*/L_{\odot}) = 5.78 and is thus a classical LBV, but at the lower luminosity end of this group. We determine its mass-loss rate to 4.0×106 M 4.0 \times 10^{-6}~M_{\odot}~yr1^{-1}. We present R71's spectral energy distribution from the near-ultraviolet to the mid-infrared during its present outburst. Mid-infrared observations suggest that we are witnessing dust formation and grain evolution. Semi-regular oscillatory variability in the star's light curve is observed during the current outburst. Absorption lines develop a second blue component on a timescale twice that length. The variability may consist of one (quasi-)periodic component with P ~ 425/850 d with additional variations superimposed. During its current S Doradus outburst, R71 occupies a region in the HR diagram at the high-luminosity extension of the Cepheid instability strip and exhibits similar irregular variations as RV Tau variables. LBVs do not pass the Cepheid instability strip because of core evolution, but they develop comparable cool, low-mass, extended atmospheres in which convective instabilities may occur. As in the case of RV Tau variables, the occurrence of double absorption lines with an apparent regular cycle may be due to shocks within the atmosphere and period doubling may explain the factor of two in the lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&

    Stellar parameters of Be stars observed with X-shooter

    Full text link
    Aims. The X-shooter archive of several thousand telluric star spectra was skimmed for Be and Be-shell stars to derive the stellar fundamental parameters and statistical properties, in particular for the less investigated late type Be stars, and the extension of the Be phenomenon into early A stars. Methods. An adapted version of the BCD method is used, utilizing the Balmer discontinuity parameters to determine effective temperature and surface gravity. This method is optimally suited for late B stars. The projected rotational velocity was obtained by profile fitting to the Mg ii lines of the targets, and the spectra were inspected visually for the presence of peculiar features such as the infrared Ca ii triplet or the presence of a double Balmer discontinuity. The Balmer line equivalent widths were measured, but due to uncertainties in determining the photospheric contribution are useful only in a subsample of Be stars for determining the pure emission contribution. Results. A total of 78 Be stars, mostly late type ones, were identified in the X-shooter telluric standard star archive, out of which 48 had not been reported before. The general trend of late type Be stars having more tenuous disks and being less variable than early type ones is confirmed. The relatively large number (48) of relatively bright (V > 8.5) additional Be stars casts some doubt on the statistics of late type Be stars; they are more common than currently thought: The Be/B star fraction may not strongly depend on spectral subtype.Comment: Accepted for publication in A&

    On the influence of the companion star in Eta Carinae: 2D radiative transfer modeling of the ultraviolet and optical spectra

    Full text link
    We present 2D radiative transfer modeling of the Eta Carinae binary system accounting for the presence of a wind-wind collision (WWC) cavity carved in the optically-thick wind of the primary star. By comparing synthetic line profiles with HST/STIS spectra obtained near apastron, we show that the WWC cavity has a strong influence on multi-wavelength diagnostics. This influence is regulated by the modification of the optical depth in the continuum and spectral lines. We find that H-alpha, H-beta, and Fe II lines are the most affected by the WWC cavity, since they form over a large volume of the primary wind. These spectral lines depend on latitude and azimuth since, according to the orientation of the cavity, different velocity regions of a spectral line are affected. For 2D models with orientation corresponding to orbital inclination angle 110deg < i < 140deg and longitude of periastron 210deg < omega < 330deg, the blueshifted and zero-velocity regions of the line profiles are the most affected. These orbital orientations are required to simultaneously fit the UV and optical spectrum of Eta Car, for a half-opening angle of the cavity in the range 50-70deg. We find that the excess P-Cygni absorption seen in H-alpha, H-beta and optical Fe II lines in spherical models becomes much weaker or absent in the 2D models, in agreement with the observations. The observed UV spectrum of Eta Car, dominated by Fe II absorption lines, is superbly reproduced by our 2D cavity models. Small discrepancies still remain, as H-gamma and H-delta absorptions are overestimated by our models. We suggest that photoionization of the wind of the primary by the hot companion star is responsible for the weak absorption seen in these lines. Our CMFGEN models indicate that the primary star has a mass-loss rate of 8.5x10e-4 Msun/yr and wind terminal velocity of 420 km/s around the 2000 apastron.Comment: 20 pages, 14 figures, accepted for publication in MNRA

    Modeling and Reasoning over Distributed Systems using Aspect-Oriented Graph Grammars

    Full text link
    Aspect-orientation is a relatively new paradigm that introduces abstractions to modularize the implementation of system-wide policies. It is based on a composition operation, called aspect weaving, that implicitly modifies a base system by performing related changes within the system modules. Aspect-oriented graph grammars (AOGG) extend the classic graph grammar formalism by defining aspects as sets of rule-based modifications over a base graph grammar. Despite the advantages of aspect-oriented concepts regarding modularity, the implicit nature of the aspect weaving operation may also introduce issues when reasoning about the system behavior. Since in AOGGs aspect weaving is characterized by means of rule-based rewriting, we can overcome these problems by using known analysis techniques from the graph transformation literature to study aspect composition. In this paper, we present a case study of a distributed client-server system with global policies, modeled as an aspect-oriented graph grammar, and discuss how to use the AGG tool to identify potential conflicts in aspect weaving

    Eta Carinae -- Physics of the Inner Ejecta

    Full text link
    Eta Carinae's inner ejecta are dominated observationally by the bright Weigelt blobs and their famously rich spectra of nebular emission and absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000 to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0) gas. Located within 1000 AU of the central star, they contain heavily CNO-processed material that was ejected from the star about a century ago. Outside the blobs, the inner ejecta include absorption-line clouds with similar conditions, plus emission-line gas that has generally lower densities and a wider range of speeds (reaching a few hundred km/s) compared to the blobs. The blobs appear to contain a negligible amount of dust and have a nearly dust-free view of the central source, but our view across the inner ejecta is severely affected by uncertain amounts of dust having a patchy distribution in the foreground. Emission lines from the inner ejecta are powered by photoionization and fluorescent processes. The variable nature of this emission, occurring in a 5.54 yr event cycle, requires specific changes to the incident flux that hold important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe
    corecore