549 research outputs found
Metal-Insulator Transition in a Generalized Hubbard Model with Correlated Hopping at Half-Filling
In the present paper metal-insulator transition is studied in a generalized
Hubbard model with correlated hopping at half-filling and zero temperature.
Single-particle Green function and energy spectrum of electron system are
calculated. The expressions for energy gap width and the concentration of polar
states (holes or doublons) are obtained. The conditions for metallic and
insulating states are found.Comment: 11 pages, 2 eps figures, Latex 2.09, submitted to Phys. Stat. Sol.
(B
The three-dimensional structure of the Eta Carinae Homunculus
We investigate, using the modeling code SHAPE, the three-dimensional
structure of the bipolar Homunculus nebula surrounding Eta Carinae, as mapped
by new ESO VLT/X-Shooter observations of the H2 micron
emission line. Our results reveal for the first time important deviations from
the axisymmetric bipolar morphology: 1) circumpolar trenches in each lobe
positioned point-symmetrically from the center and 2) off-planar protrusions in
the equatorial region from each lobe at longitudinal (~55 degrees) and
latitudinal (10-20 degrees) distances from the projected apastron direction of
the binary orbit. The angular distance between the protrusions (~110 degrees)
is similar to the angular extent of each polar trench (~130 degrees) and nearly
equal to the opening angle of the wind-wind collision cavity (~110 degrees). As
in previous studies, we confirm a hole near the centre of each polar lobe and
no detectable near-IR H2 emission from the thin optical skirt seen prominently
in visible imagery. We conclude that the interaction between the outflows
and/or radiation from the central binary stars and their orientation in space
has had, and possibly still has, a strong influence on the Homunculus. This
implies that prevailing theoretical models of the Homunculus are incomplete as
most assume a single star origin that produces an axisymmetric nebula. We
discuss how the newly found features might be related to the Homunculus
ejection, the central binary and the interacting stellar winds. We also include
a 3D printable version of our Homunculus model.Comment: 14 pages, 7 color figures, 1 interactive 3D figure (Figure 5,
requires Adobe Reader), published in MNRAS. A 3D printable version of our
Homunculus model can be downloaded from
http://svs.gsfc.nasa.gov/vis/a010000/a011500/a011568/Eta_Car_Homunuculus_3D_model.zip
or from the 'Supporting Information' link in the electronic version of the
MNRAS articl
Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71
To better understand the LBV phenomenon, we analyze multi-epoch and
multi-wavelength spectra and photometry of R71. Pre-outburst spectra are
analyzed with the radiative transfer code CMFGEN to determine the star's
fundamental stellar parameters. During quiescence, R71 has an effective
temperature of and a luminosity of
log = 5.78 and is thus a classical LBV, but at the lower
luminosity end of this group. We determine its mass-loss rate to yr. We present R71's spectral energy distribution
from the near-ultraviolet to the mid-infrared during its present outburst.
Mid-infrared observations suggest that we are witnessing dust formation and
grain evolution. Semi-regular oscillatory variability in the star's light curve
is observed during the current outburst. Absorption lines develop a second blue
component on a timescale twice that length. The variability may consist of one
(quasi-)periodic component with P ~ 425/850 d with additional variations
superimposed. During its current S Doradus outburst, R71 occupies a region in
the HR diagram at the high-luminosity extension of the Cepheid instability
strip and exhibits similar irregular variations as RV Tau variables. LBVs do
not pass the Cepheid instability strip because of core evolution, but they
develop comparable cool, low-mass, extended atmospheres in which convective
instabilities may occur. As in the case of RV Tau variables, the occurrence of
double absorption lines with an apparent regular cycle may be due to shocks
within the atmosphere and period doubling may explain the factor of two in the
lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&
Stellar parameters of Be stars observed with X-shooter
Aims. The X-shooter archive of several thousand telluric star spectra was
skimmed for Be and Be-shell stars to derive the stellar fundamental parameters
and statistical properties, in particular for the less investigated late type
Be stars, and the extension of the Be phenomenon into early A stars. Methods.
An adapted version of the BCD method is used, utilizing the Balmer
discontinuity parameters to determine effective temperature and surface
gravity. This method is optimally suited for late B stars. The projected
rotational velocity was obtained by profile fitting to the Mg ii lines of the
targets, and the spectra were inspected visually for the presence of peculiar
features such as the infrared Ca ii triplet or the presence of a double Balmer
discontinuity. The Balmer line equivalent widths were measured, but due to
uncertainties in determining the photospheric contribution are useful only in a
subsample of Be stars for determining the pure emission contribution. Results.
A total of 78 Be stars, mostly late type ones, were identified in the X-shooter
telluric standard star archive, out of which 48 had not been reported before.
The general trend of late type Be stars having more tenuous disks and being
less variable than early type ones is confirmed. The relatively large number
(48) of relatively bright (V > 8.5) additional Be stars casts some doubt on the
statistics of late type Be stars; they are more common than currently thought:
The Be/B star fraction may not strongly depend on spectral subtype.Comment: Accepted for publication in A&
On the influence of the companion star in Eta Carinae: 2D radiative transfer modeling of the ultraviolet and optical spectra
We present 2D radiative transfer modeling of the Eta Carinae binary system
accounting for the presence of a wind-wind collision (WWC) cavity carved in the
optically-thick wind of the primary star. By comparing synthetic line profiles
with HST/STIS spectra obtained near apastron, we show that the WWC cavity has a
strong influence on multi-wavelength diagnostics. This influence is regulated
by the modification of the optical depth in the continuum and spectral lines.
We find that H-alpha, H-beta, and Fe II lines are the most affected by the WWC
cavity, since they form over a large volume of the primary wind. These spectral
lines depend on latitude and azimuth since, according to the orientation of the
cavity, different velocity regions of a spectral line are affected. For 2D
models with orientation corresponding to orbital inclination angle 110deg < i <
140deg and longitude of periastron 210deg < omega < 330deg, the blueshifted and
zero-velocity regions of the line profiles are the most affected. These orbital
orientations are required to simultaneously fit the UV and optical spectrum of
Eta Car, for a half-opening angle of the cavity in the range 50-70deg. We find
that the excess P-Cygni absorption seen in H-alpha, H-beta and optical Fe II
lines in spherical models becomes much weaker or absent in the 2D models, in
agreement with the observations. The observed UV spectrum of Eta Car, dominated
by Fe II absorption lines, is superbly reproduced by our 2D cavity models.
Small discrepancies still remain, as H-gamma and H-delta absorptions are
overestimated by our models. We suggest that photoionization of the wind of the
primary by the hot companion star is responsible for the weak absorption seen
in these lines. Our CMFGEN models indicate that the primary star has a
mass-loss rate of 8.5x10e-4 Msun/yr and wind terminal velocity of 420 km/s
around the 2000 apastron.Comment: 20 pages, 14 figures, accepted for publication in MNRA
Modeling and Reasoning over Distributed Systems using Aspect-Oriented Graph Grammars
Aspect-orientation is a relatively new paradigm that introduces abstractions
to modularize the implementation of system-wide policies. It is based on a
composition operation, called aspect weaving, that implicitly modifies a base
system by performing related changes within the system modules. Aspect-oriented
graph grammars (AOGG) extend the classic graph grammar formalism by defining
aspects as sets of rule-based modifications over a base graph grammar. Despite
the advantages of aspect-oriented concepts regarding modularity, the implicit
nature of the aspect weaving operation may also introduce issues when reasoning
about the system behavior. Since in AOGGs aspect weaving is characterized by
means of rule-based rewriting, we can overcome these problems by using known
analysis techniques from the graph transformation literature to study aspect
composition. In this paper, we present a case study of a distributed
client-server system with global policies, modeled as an aspect-oriented graph
grammar, and discuss how to use the AGG tool to identify potential conflicts in
aspect weaving
Eta Carinae -- Physics of the Inner Ejecta
Eta Carinae's inner ejecta are dominated observationally by the bright
Weigelt blobs and their famously rich spectra of nebular emission and
absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000
to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0)
gas. Located within 1000 AU of the central star, they contain heavily
CNO-processed material that was ejected from the star about a century ago.
Outside the blobs, the inner ejecta include absorption-line clouds with similar
conditions, plus emission-line gas that has generally lower densities and a
wider range of speeds (reaching a few hundred km/s) compared to the blobs. The
blobs appear to contain a negligible amount of dust and have a nearly dust-free
view of the central source, but our view across the inner ejecta is severely
affected by uncertain amounts of dust having a patchy distribution in the
foreground. Emission lines from the inner ejecta are powered by photoionization
and fluorescent processes. The variable nature of this emission, occurring in a
5.54 yr event cycle, requires specific changes to the incident flux that hold
important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova
Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe
- …
