4,975 research outputs found
Entropy, Ergodicity and Stem Cell Multipotency
Populations of mammalian stem cells commonly exhibit considerable cell-cell
variability. However, the functional role of this diversity is unclear. Here,
we analyze expression fluctuations of the stem cell surface marker Sca1 in
mouse hematopoietic progenitor cells using a simple stochastic model and find
that the observed dynamics naturally lie close to a critical state, thereby
producing a diverse population that is able to respond rapidly to environmental
changes. We propose an information-theoretic interpretation of these results
that views cellular multipotency as an instance of maximum entropy statistical
inference.Comment: 6 pages, 3 figure
Knots, Braids and Hedgehogs from the Eikonal Equation
The complex eikonal equation in the three space dimensions is considered. We
show that apart from the recently found torus knots this equation can also
generate other topological configurations with a non-trivial value of the
index: braided open strings as well as hedgehogs. In particular,
cylindric strings i.e. string solutions located on a cylinder with a constant
radius are found. Moreover, solutions describing strings lying on an arbitrary
surface topologically equivalent to cylinder are presented. We discus them in
the context of the eikonal knots. The physical importance of the results
originates in the fact that the eikonal knots have been recently used to
approximate the Faddeev-Niemi hopfions.Comment: 15 pages, 5 figure
Integrating Species Traits into Species Pools
Despite decades of research on the species‐pool concept and the recent explosion of interest in trait‐based frameworks in ecology and biogeography, surprisingly little is known about how spatial and temporal changes in species‐pool functional diversity (SPFD) influence biodiversity and the processes underlying community assembly. Current trait‐based frameworks focus primarily on community assembly from a static regional species pool, without considering how spatial or temporal variation in SPFD alters the relative importance of deterministic and stochastic assembly processes. Likewise, species‐pool concepts primarily focus on how the number of species in the species pool influences local biodiversity. However, species pools with similar richness can vary substantially in functional‐trait diversity, which can strongly influence community assembly and biodiversity responses to environmental change. Here, we integrate recent advances in community ecology, trait‐based ecology, and biogeography to provide a more comprehensive framework that explicitly considers how variation in SPFD, among regions and within regions through time, influences the relative importance of community assembly processes and patterns of biodiversity. First, we provide a brief overview of the primary ecological and evolutionary processes that create differences in SPFD among regions and within regions through time. We then illustrate how SPFD may influence fundamental processes of local community assembly (dispersal, ecological drift, niche selection). Higher SPFD may increase the relative importance of deterministic community assembly when greater functional diversity in the species pool increases niche selection across environmental gradients. In contrast, lower SPFD may increase the relative importance of stochastic community assembly when high functional redundancy in the species pool increases the influence of dispersal history or ecological drift. Next, we outline experimental and observational approaches for testing the influence of SPFD on assembly processes and biodiversity. Finally, we highlight applications of this framework for restoration and conservation. This species‐pool functional diversity framework has the potential to advance our understanding of how local‐ and regional‐scale processes jointly influence patterns of biodiversity across biogeographic regions, changes in biodiversity within regions over time, and restoration outcomes and conservation efforts in ecosystems altered by environmental change
Chandra X-Ray Spectroscopy Of The Very Early O Supergiant HD 93129A: Constraints On Wind Shocks And The Mass-Loss Rate
We present an analysis of both the resolved X-ray emission-line profiles and the broad-band X-ray spectrum of the O-2 If* star HD 93129A, measured with the Chandra High Energy Transmission Grating Spectrometer ( HETGS). This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind-shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10 per cent of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths of R-*. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star\u27s closest visual companion at a distance of 100 au. The broad-band X-ray spectrum is fitted with a dominant emission temperature of just kT = 0.6 keV along with significant wind absorption. The broad-band wind absorption and the line profiles provide two independent measurements of the wind mass-loss rate:. M = 5.2(-1.5)(+1.8) x 10(-6) and 6.8(-2.2)(+2.8) x 10(-6) M-circle dot yr(-1), respectively. This is the first consistent modelling of the X-ray line-profile shapes and broad-band X-ray spectral energy distribution in a massive star, and represents a reduction of a factor of 3-4 compared to the standard H alpha mass-loss rate that assumes a smooth wind
Stages of development and injury: an epidemiological survey of young children presenting to an emergency department
<p><b>Background:</b> The aim of our study was to use a local (Glasgow, west of Scotland) version of a Canadian injury surveillance programme (CHIRPP) to investigate the relationship between the developmental stage of young (pre-school) children, using age as a proxy, and the occurrence (incidence, nature, mechanism and location) of injuries presenting to a Scottish hospital emergency department, in an attempt to replicate the findings of a recent study in Kingston, Canada.</p>
<p><b>Methods:</b> We used the Glasgow CHIRPP data to perform two types of analyses. First, we calculated injury rates for that part of the hospital catchment area for which reasonably accurate population denominators were available. Second, we examined detailed injury patterns, in terms of the circumstances, mechanisms, location and types of injury. We compared our findings with those of the Kingston researchers.</p>
<p><b>Results:</b> A total of 17,793 injury records for children aged up to 7 years were identified over the period 1997–99. For 1997–2001, 6,188 were used to calculate rates in the west of the city only. Average annual age specific rates per 1000 children were highest in both males and females aged 12–35 months. Apart from the higher rates in Glasgow, the pattern of injuries, in terms of breakdown factors, mechanism, location, context, and nature of injury, were similar in Glasgow and Kingston.</p>
<p><b>Conclusion:</b> We replicated in Glasgow, UK, the findings of a Canadian study demonstrating a correlation between the pattern of childhood injuries and developmental stage. Future research should take account of the need to enhance statistical power and explore the interaction between age and potential confounding variables such as socio-economic deprivation. Our findings highlight the importance of designing injury prevention interventions that are appropriate for specific stages of development in children.</p>
The Tully-Fisher Relation of Barred Galaxies
We present new data exploring the scaling relations, such as the Tully-Fisher
relation (TFR), of bright barred and unbarred galaxies. A primary motivation
for this study is to establish whether barredness correlates with, and is a
consequence of, virial properties of galaxies. Various lines of evidence
suggest that dark matter is dominant in disks of bright unbarred galaxies at
2.2 disk scale lengths, the point of peak rotation for a pure exponential disk.
We test the hypothesis that the TF plane of barred high surface brightness
galaxies is offset from the mean TFR of unbarred galaxies, as might be expected
if barred galaxies are ``maximal'' in their inner parts. We use existing and
new TF data to search for basic structural differences between barred and
unbarred galaxies. Our new data consist of 2-dimensional Halpha velocity fields
derived from SparsePak integral field spectroscopy (IFS) and V,I-band CCD
images collected at the WIYN Observatory for 14 strongly barred galaxies. We
use WIYN/SparsePak (2-D) velocity fields to show that long-slit (1-D) spectra
yield reliable circular speed measurements at or beyond 2.2 disk scale lengths,
far from any influence of the bar. This enables us to consider line width
measurements from extensive TF surveys which include barred and nonbarred disks
and derive detailed scaling relation comparisons. We find that for a given
luminosity, barred and unbarred galaxies have comparable structural and
dynamical parameters, such as peak velocities, scale lengths, or colors. In
particular, the location of a galaxy in the TF plane is independent of
barredness. In a global dynamical sense, barred and unbarred galaxies behave
similarly and are likely to have, on average, comparable fractions of luminous
and dark matter at a given radius. (abridged)Comment: Accepted for publication in the ApJ (September 1, 2003 issue, v594).
Appendix figures with I-band image and superimposed 2-D velocity field plus
rotation curves must be downloaded separately (due to size constraints) from
http://www.astro.ubc.ca/people/courteau/public/courteau03_TFbars.ps.g
Scaling Relations of Spiral Galaxies
We construct a large data set of global structural parameters for 1300 field
and cluster spiral galaxies and explore the joint distribution of luminosity L,
optical rotation velocity V, and disk size R at I- and 2MASS K-bands. The I-
and K-band velocity-luminosity (VL) relations have log-slopes of 0.29 and 0.27,
respectively with sigma_ln(VL)~0.13, and show a small dependence on color and
morphological type in the sense that redder, early-type disk galaxies rotate
faster than bluer, later-type disk galaxies for most luminosities. The VL
relation at I- and K-bands is independent of surface brightness, size and light
concentration. The log-slope of the I- and K-band RL relations is a strong
function of morphology and varies from 0.25 to 0.5. The average dispersion
sigma_ln(RL) decreases from 0.33 at I-band to 0.29 at K, likely due to the
2MASS selection bias against lower surface brightness galaxies. Measurement
uncertainties are sigma_ln(V)~0.09, sigma_ln(L)~0.14 and somewhat larger and
harder to estimate for ln(R). The color dependence of the VL relation is
consistent with expectations from stellar population synthesis models. The VL
and RL residuals are largely uncorrelated with each other; the RV-RL residuals
show only a weak positive correlation. These correlations suggest that scatter
in luminosity is not a significant source of the scatter in the VL and RL
relations. The observed scaling relations can be understood in the context of a
model of disk galaxies embedded in dark matter halos that invokes low mean spin
parameters and dark halo expansion, as we describe in our companion paper
(Dutton et al. 2007). We discuss in two appendices various pitfalls of standard
analytical derivations of galaxy scaling relations, including the Tully-Fisher
relation with different slopes. (Abridged).Comment: Accepted for publication at ApJ. The full document, with
high-resolution B&W and colour figures, is available at
http://www.astro.queensu.ca/~courteau/papers/VRL2007ApJ.pdf . Our data base
for 1303 spiral galaxies is also available at
http://www.astro.queensu.ca/~courteau/data/VRL2007.da
Instability of insular tree communities in an Amazonian mega-dam is driven by impaired recruitment and altered species composition
Mega-dams create highly fragmented archipelagos, affecting biodiversity and ecosystem functioning in remnant forest isolates. This study assessed the long-term impact of dam-induced fragmentation on insular tropical tree communities, with the aim of generating robust recommendations to mitigate some of the detrimental biodiversity impacts associated with future dam development. We inventoried adult and sapling trees across 89 permanent plots, located on 36 islands and in three mainland continuous forest sites in the Balbina Dam, Brazilian Amazon. We examined differences in recruitment, structure, and composition of sapling and adult tree communities, in relation to plot-, patch- and landscape-scale attributes including area, isolation, and fire severity. Islands harboured significantly lower sapling (mean ± 95% CI 48.6 ± 3.8) and adult (5 ± 0.2) tree densities per 0.01 ha, than nearby mainland continuous forest (saplings, 65.7 ± 7.5; adults, 5.6 ± 0.3). Insular sapling and adult tree communities were more dissimilar than in mainland sites, and species compositions showed a directional shift away from mainland forests, induced by fire severity, island area, and isolation. Insular sapling recruitment declined with increasing fire severity; tree communities with higher community-weighted mean wood density showed the greatest recruitment declines. Our results suggest that insular tree communities are unstable, with rare species becoming extinction-prone due to reduced tree recruitment and density on islands, potentially leading to future losses in biodiversity and ecosystem functioning across Balbina's >3,500 reservoir islands. Policy implications. In Balbina, fire and reduced habitat area and connectivity were drivers of tree community decay after only 28 years of insularization, despite strict protection provided by the ~940,000 ha Uatumã Biological Reserve. Given that many dams are planned for lowland, moderately undulating Amazonia, we recommend that dam development strategy explicitly considers (a) dam location, aiming to minimize creation of small (<10 ha) and isolated islands, (b) maintaining reservoir water levels during droughts to reduce fire risk, and (c) including aggregate island area in environmental impact and offset calculations. Ideally, we recommend that alternatives to hydropower be sought in lowland tropical regions, due to the far-reaching biodiversity losses and ecosystem disruption caused by river impoundment
Modeling broadband X-ray absorption of massive star winds
We present a method for computing the net transmission of X-rays emitted by
shock-heated plasma distributed throughout a partially optically thick stellar
wind from a massive star. We find the transmission by an exact integration of
the formal solution, assuming that the emitting plasma and absorbing plasma are
mixed at a constant mass ratio above some minimum radius, below which there is
assumed to be no emission. This model is more realistic than either the slab
absorption associated with a corona at the base of the wind or the exospheric
approximation that assumes that all observed X-rays are emitted without
attenuation from above the radius of optical depth unity. Our model is
implemented in XSPEC as a pre-calculated table that can be coupled to a
user-defined table of the wavelength dependent wind opacity. We provide a
default wind opacity model that is more representative of real wind opacities
than the commonly used neutral interstellar medium (ISM) tabulation.
Preliminary modeling of \textit{Chandra} grating data indicates that the X-ray
hardness trend of OB stars with spectral subtype can largely be understood as a
wind absorption effect.Comment: 9 pages, 9 figures. Includes minor corrections made in proof
CD105 (Endoglin) exerts prognostic effects via its role in the microvascular niche of paediatric high grade glioma
Paediatric high grade glioma (pHGG) (World Health Organisation astrocytoma grades III and IV) remains poor prognosis tumours, with a median survival of only 15 months following diagnosis. Current investigation of anti-angiogenic strategies has focused on adult glioblastoma multiforme (GBM) with phase III trials targeting vascular endothelial growth factor continuing. In this study we investigated whether the degree of vascularity correlated with prognosis in a large cohort of pHGG (n = 150) and whether different vessel markers carried different prognostic value. We found that CD105 (endoglin) had a strongly significant association with poor prognosis on multivariate analysis (p = <0.001). Supervised hierarchical clustering of genome wide gene expression data identified 13 genes associated with differential degrees of vascularity in the cohort. The novel angiogenesis-associated genes identified in this analysis (including MIPOL-1 and ENPP5) were validated by realtime polymerase chain reaction. We also demonstrate that CD105 positive blood vessels associate with CD133 positive tumour cells and that a proportion of CD105 positive vessel cells demonstrates co-positivity for CD133, suggesting that the recently described phenomenon of vasculogenic mimicry occurs in pHGG. Together, the data suggest that targeting angiogenesis, and in particular CD105, is a valid therapeutic strategy for pHGG
- …
