52,287 research outputs found

    Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis

    Get PDF
    Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply in Arabidopsis. Changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root density, but similar effects on lateral root length. Relative to shoot dry weight (DW), primary root length decreased with increasing nitrate availability, while it increased with increasing phosphate supply. Lateral root density remained constant across a range of nitrate supplies, but decreased with increasing phosphate supply. In contrast, lateral root elongation was suppressed both by high nitrate and high phosphate supplies. Local supplies of high nitrate or phosphate in a patch also had different effects. Primary root growth was not affected by a high nitrate patch, but growth through a high phosphate patch reduced primary root growth after the root left the patch. A high nitrate patch induced an increase in lateral root density in the patch, whereas lateral root density was unaffected by a high phosphate patch. However, both phosphate- and nitrate-rich patches induced lateral root elongation in the patch and suppressed it outside the patch. This co-ordinated response of lateral roots also occurs in soil-grown plants exposed to a nutrient-rich patch. The auxin-resistant mutants axr1, axr4 and aux1 all showed the wild-type lateral root elongation responses to a nitrate-rich patch, suggesting that auxin is not required for this response

    Phosphate availability regulates root system architecture in Arabidopsis

    Get PDF
    Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability

    Low variability of single-molecule conductance assisted by bulky metal-molecule contacts

    Get PDF
    A detailed study of the trimethylsilylethynyl moiety, –C[triple bond]CSiMe3 (TMSE) , as an anchoring group in metalmoleculemetal junctions, using a combination of experiment and density functional theory is presented. It is shown that the TMSE anchoring group provides improved control over the molecule-substrate arrangement within metalmoleculemetal junctions, with the steric bulk of the methyl groups limiting the number of highly transmissive binding sites at the electrode surface, resulting in a single sharp peak in the conductance histograms recorded by both the in situ break junction and I(s) STM techniques. As a consequence of the low accessibility of the TMSE group to surface binding configurations of measurable conductance, only about 10% of gold break junction formation cycles result in the clear formation of molecular junctions in the experimental histograms. The DFT-computed transmission characteristics of junctions formed from the TMSE-contacted oligo(phenylene)ethynylene (OPE)-based molecules described here are dominated by tunneling effects through the highest-occupied molecular orbitals (HOMOs). This gives rise to similar conductance characteristics in these TMSE-contacted systems as found in low conductance-type junctions based on comparably structured OPE-derivatives with amine-contacts that also conduct through HOMO-based channels.R. R. F. thanks the Consejería de Educación del Principado de Asturias for a Severo Ochoa grant (BP11-069). V. M. G.-S. thanks the Spanish Ministerio de Economía y Competitividad for a Ramón y Cajal fellowship (RYC-2010-06053). R. R. F., J. F. and V. M. G.-S. wish to acknowledge financial support from the Spanish grant FIS2012-34858 and the Marie Curie Network MOLESCO. P. C. and S. M. are grateful for financial assistance from the Ministerio de Economía y Competitividad of Spain in the framework of the project CTQ2012-33198 as well as the award of the CTQ2013-50187-EXP grant. H. M. O., P. C., and S. M. thank the support from DGA and Fondos FEDER for funding through the Platon research group. H. M. O. is also grateful for financial assistance from the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovaciín from Ministerio de Educación (Ecuador). S. M. thanks the Ministerio de Educación from Spain for financial support through the framework of the Campus de Excelencia Internacional, CEI Iberus. S. J. H., R. J. N., P. J. L. and S. M.-G. thank the EPSRC for funding (EPSRC grants EP/K007785/1, EP/H035184/1, EP/K007548/1, EP/H005595/1). P. J. L. holds an Australian Research Council Future Fellowship (FT120100073) and gratefully acknowledges funding for this work from the ARC (DP140100855).Peer Reviewe

    Perturbative and non-perturbative studies in low dimensional quantum field theory

    Get PDF
    A relevant perturbation of a conformal field theory (CFT) on the half-plane, by both a bulk and boundary operator, often leads to a massive theory with a particle description in terms of the bulk S-matrix and boundary reflection factor R. The link between the particle basis and the CFT in the bulk is usually made with the thermodynamic Bethe ansatz effective central charge C(_eff). This allows a conjectured S-matrix to be identified with a specific perturbed CFT. Less is known about the links between the reflection factors and conformal boundary conditions, but it has been proposed that an exact, off-critical version of Affleck and Ludwig's g-function could be used, analogously to C(_eff), to identify the physically realised reflection factors and to match them with the corresponding boundary conditions. In the first part of this thesis, this exact g-function is tested for the purely elastic scattering theories related to the ADET Lie algebras. Minimal reflection factors are given, and a method to incorporate a boundary parameter is proposed. This enables the prediction of several new flows between conformal boundary conditions to be made. The second part of this thesis concerns the three-parameter family of PT-symmetric Hamiltonians H(M,o,1) = p(^2) – (ix) (^2M) – α(ix) The positions where the eigenvalues merge and become complex correspond to quadratic and cubic exceptional points. The quasi-exact solvability of the models for M = 3 is exploited to exploreaway from M = 3 is investigated using both numerical and perturbative approaches

    Valorization of water treatment sludge from a circular economy perspective: the case of the WTP of Areias de Vilar

    Get PDF
    The water treatment process generates waste called Water Treatment "sludge" (WTS), which has added value and is therefore viable for use in other production processes, thus applying the principle of circular economy. This paper aims to present the results of the diagnosis of the Water Treatment Plant (WTP) of Areias de Vilar, Portugal. The WTP treats raw surface water (abstracted from river Cávado) by treatment scheme composed of the following unit processes: pre-oxidation, remineralization, coagulation/flocculation, decantation, fast filtration, disinfection and pH correction. In 2022, this plant produced more than 29 million m3 of treated water and generated about 928 ton of sludge. After drying, a significant part of these sludges consists of silica (SiO2), alumina (Al2O3) and hematite (Fe2O3), in addition to organic matter, aluminium hydroxide (Al(OH)3), other oxidized metals, including calcium oxide (CaO) (mainly originated in the remineralization step), activated carbon and polyelectrolyte. The Areias de Vilar WTP has implemented a more efficient drying process (natural oven), to obtain a dry solid waste with more suitable characteristics for its recovery as a raw material in the construction industry, promoting a more sustainable approach from the perspective of the circular economy

    A new model for heating of Solar North Polar Coronal Hole

    Full text link
    This paper presents a new model of North Polar Coronal Hole (NPCH) to study dissipation/propagation of MHD waves. We investigate the effects of the isotropic viscosity and heat conduction on the propagation characteristics of the MHD waves in NPCH. We first model NPCH by considering the differences in radial as well as in the direction perpendicular to the line of sight (\textit{los}) in temperature, particle number density and non-thermal velocities between plumes and interplume lanes for the specific case of \ion{O}{VI} ions. This model includes parallel and perpendicular (to the magnetic field) heat conduction and viscous dissipation. Next, we derive the dispersion relations for the MHD waves in the case of absence and presence of parallel heat conduction. In the case of absence of parallel heat conduction, we find that MHD wave dissipation strongly depends on the viscosity for modified acoustic and Alfven waves. The energy flux density of acoustic waves varies between 104.710^{4.7} and 107ergcm2s110^7 \,erg\,cm^{-2}\,s^{-1} while the energy flux density of Alfven waves turned out to be between 106108.6ergcm2s1 10^6-10^{8.6} \,erg\,cm^{-2}\,s^{-1}. But, solutions of the magnetoacustic waves show that the parallel heat conduction introduce anomalous dispersion to the NPCH plasma wherein the group velocity of waves exceeds the speed of light in vacuum. Our results suggests all these waves may provide significant source for the observed preferential accelerating and heating of \ion{O}{VI} ions, in turn coronal plasma heating and an extra accelerating agent for fast solar wind in NPCH.Comment: 17 pages, 11 figures, Submitted to MNRA

    Relational Hidden Variables and Non-Locality

    Full text link
    We use a simple relational framework to develop the key notions and results on hidden variables and non-locality. The extensive literature on these topics in the foundations of quantum mechanics is couched in terms of probabilistic models, and properties such as locality and no-signalling are formulated probabilistically. We show that to a remarkable extent, the main structure of the theory, through the major No-Go theorems and beyond, survives intact under the replacement of probability distributions by mere relations.Comment: 42 pages in journal style. To appear in Studia Logic

    State Medicaid health maintenance organization policies and special-needs children.

    Get PDF
    Little research has been done to ascertain what enrollment in a health maintenance organization (HMO) may mean for the care of Medicaid recipients who regularly require specialty health services. This article presents the results of a survey of all State Medicaid agencies regarding their policies for enrolling and serving special-needs children in HMOs. The survey revealed that many States have implemented one or more strategies to protect special-needs Medicaid recipients enrolled in HMOs. The survey results suggest, however, that such strategies are too limited in scope to ensure appropriate access to specialty services for all children with special health needs

    Mediating Cognitive Transformation with VR 3D Sketching during Conceptual Architectural Design Process

    Get PDF
    Communications for information synchronization during the conceptual design phase require designers to employ more intuitive digital design tools. This paper presents findings of a feasibility study for using VR 3D sketching interface in order to replace current non-intuitive CAD tools. We used a sequential mixed method research methodology including a qualitative case study and a cognitive-based quantitative protocol analysis experiment. Foremost, the case study research was conducted in order to understand how novice designers make intuitive decisions. The case study documented the failure of conventional sketching methods in articulating complicated design ideas and shortcomings of current CAD tools in intuitive ideation. The case study’s findings then became the theoretical foundations for testing the feasibility of using VR 3D sketching interface during design. The latter phase of study evaluated the designers’ spatial cognition and collaboration at six different levels: “physical-actions”, “perceptualac ons”, “functional-actions”, “conceptual-actions”, “cognitive synchronizations”, and “gestures”. The results and confirmed hypotheses showed that the utilized tangible 3D sketching interface improved novice designers’ cognitive and collaborative design activities. In summary this paper presents the influences of current external representation tools on designers’ cognition and collaboration as well as providing the necessary theoretical foundations for implementing VR 3D sketching interface. It contributes towards transforming conceptual architectural design phase from analogue to digital by proposing a new VR design interface. The paper proposes this transformation to fill in the existing gap between analogue conceptual architectural design process and remaining digital engineering parts of building design process hence expediting digital design process
    corecore