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Abstract 

A relevant perturbation of a conformal field theory (CFT) on the half-plane, by 

both a bulk and boundary operator, often leads to a massive theory with a particle 

description in terms of the bulk S-matrix and boundary reflection factor R. The 

link between the particle basis and the CFT in the bulk is usually made with the 

thermodynamic Bethe ansatz effective central charge Ceff· This allows a conjectured 

S-matrix to be identified with a specific perturbed CFT. Less is known about the links 

between the reflection factors and conformal boundary conditions, but it has been 

proposed that an exact, off-critical version of Affleck and Ludwig's g-function could 

be used, analogously to Ceff, to identify the physically realised reflection factors and 

to match them with the corresponding boundary conditions. In the first part of this 

thesis, this exact g-function is tested for the purely elastic scattering theories related 

to the AD ET Lie algebras. Minimal reflection factors are given, and a method to 

incorporate a boundary parameter is proposed. This enables the prediction of several 

new flows between conformal boundary conditions to be made. 

The second part of this thesis concerns the three-parameter family of PT-symmetric 

Hamiltonians H 111,a,t = p2 - ( ix )2M- a( ix )M-l + l(lx~l). The positions where the eigen

values merge and become complex correspond to quadratic and cubic exceptional 

points. The quasi-exact solvability of the models for M = 3 is exploited to explore 

the Jordan block structure of the Hamiltonian at these points, and the phase diagram 

away from NI = 3 is investigated using both numerical and perturbative approaches. 
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Chapter 1 

Introduction 

This thesis is concerned with problems in two areas of low dimensional quantum field 

theory which at first sight seem quite disconnected. The aim of this section is to give 

a brief outline of the thesis and details of the topics mentioned will be elaborated on 

in later chapters 

The first part of this thesis looks into two dimensional integrable quantum field 

theory. A question one might ask is why should one study quantum field theory 

in two dimensions when the real world lives in four? The first reason is that many 

interesting quantum field theories can only be solved perturbatively and so some 

information is lost. In two dimensions, there is a special class of theories which have 

enough symmetry to enable them to be solved exactly (non-perturbatively) and so 

there is a trade off: the complete picture in two dimensions versus the incomplete 

picture in four. The hope is to gain an insight into the non-perturbative aspects of 

the realistic four dimensional theories by studying these exactly solvable (integrable) 

two dimensional theories. 

The prototypes of two dimensional integrable field theories are the conformal field 

theories ( CFTs). These are very interesting theories in their own right as they can 

be applied to many areas of physics. In string theory, for example, the strings live 

on a two dimensional world sheet which is described by a CFT. The application of 

interest in this thesis, however, is statistical lattice models at criticality. Conformal 

field theories are scale invariant and hence massless, but by perturbing the theory by 

a relevant perturbation a mass can be introduced. This can also be used to study 

the statistical models away from the critical point. Far away from this point (in 

1 



Chapter 1. Introduction 2 

the infrared, or IR), the massive theory has a particle description in terms of the 

two dimensional scattering matrices, S. These S matrices have a set of constraints 

imposed by integrability which can be solved for S, up to some ambiguity known as 

the 'CDD factor'. The link between this IR particle description and the UV (short 

distance) CFT is often made by the thermodynamic Bethe ansatz (TBA) effective 

central charge Ceff, which allows the S-matrix conjecture to be identified with a specific 

perturbed CFT. This is all discussed in Chapter 2. 

In many cases it is interesting to study integrable theories on a half plane. This 

corresponds to open string problems, where different conformal boundary conditions 

are thought to correspond to different possible bra.nes. There are also quantum 

impurity problems (for example, the Kondo problem) where the quantum defect can 

be modelled as a boundary. For statistical models, experimentally it is impossible 

to produce an infinite lattice so it is important to know the effects of the boundary. 

Chapter 3 discusses the boundary conditions consistent with conformal symmetry. 

The discussion of perturbed CFT is then extended to the boundary case, where the 

theory can now be perturbed by both a relevant bulk and boundary operator. In 

the IR there is once again a particle description, now with both the bulk S-matrices 

and the boundary scattering matrices, known as reflection factors R, in play. The 

contraints imposed on R by integrability are similar to those on S, however there 

are many more ambiguities in the boundary case, which is to be expected since each 

bulk theory can have many different integrable boundary conditions. The question, 

which the first part of this thesis aims to answer, is which of the infinite number of 

possible reflection factors for a given bulk theory are physically realised, and to which 

boundary conditions do they correspond? 

It is argued, in Chapter 3, that in order to answer this question one needs a 

boundary analogue of the TBA effective central charge. It is shown that the obvious 

candidate for this is the g-function, defined by Affleck and Ludwig in [3], and the 

origin of the exact off-critical version of this, recently proposed in [4], is discussed. 

This exact g-function is tested in Chapter 4 for the purely elastic theories related to 

the AD ET Lie algebras. 

Chapter 5 is concerned with the second main topic of this thesis, namely one di

mensional PT-symmetric quantum mechanics. In conventional quantum mechanics, 

the Hamiltonian is Hermitian and it is this property that guarantees the reality of the 
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spectrum. Here, this is weakened to invariance under parity P and time reversal T. 

Although this doesn't necessarily lead to an entirely real spectrum, it can be used to 

prove that all eigenvalues must either be real or appear in complex conjugate pairs. 

The main focus of Chapter 5 is on the three-parameter family of Hamiltonians 

. ' . l(l+l) H, = p2 - (zx)2M - o:(zx)M-1 + -'---'--
M,a,l x2 (1.0.1) 

and in particular, on the exceptional points which occur when complex eigenvalues 

are formed in the spectrum. 

The connection between these two seemingly very different topics is made with 

the ODE/IM correspondence. This provides a link between functional relations in 

integrable models and spectral problems in ordinary differential equations and, as 

shown in Chapter 5, it can be used to prove the reality of the spectrum of H M,a,l for 

certain regions of the parameter space. 



Chapter 2 

Techniques in Integrability 

The integrable quantum field theories of interest in this thesis are given by certain 

perturbations of two dimensional conformal field theories. In this chapter, conformal 

field theory is introduced and the effect of perturbing the theory by a relevant field 

is examined. Such a perturbation can result in a massive integrable theory in certain 

cases. These theories have an S matrix description and the method which allows the S 

matrix of a perturbed theory to be linked to the original CFT is described. Finally, a 

curious link between functional relations of integrable models and spectral problems 

of ODEs is presented, which will be used, in the context of spectral problems, in 

Chapter 5. 

As mentioned in Chapter 1, conformal field theories have applications in many 

areas of physics, but it is the area of statistical lattice models, near criticality, that 

is particularly relevant here. This chapter therefore begins with a brief overview of 

statistical mechanics which follows the presentation given by Di Francesco et. al. in 

[5] and Cardy in [6]. 

2.1 Statistical Mechanics 

Statistical mechanics is the study of complex physical systems where the exact states 

cannot be specified. The so called macrostate of the system is characterised by 

physical observables such as temperature and magnetisation, whereas the microstate 

is specified by the quantum numbers of the particles, or spin configuration on the 

lattice for discrete models. There will be several microstates corresponding to each 

4 



2.1. Statistical Mechanics 5 

macrostate and the basic idea of statistical mechanics is that any physical property 

can be thought of as a statistical average over the relevant collection of microstates. 

The statistical models of interest in this thesis are the discrete lattice models, the 

most famous of which is the two-dimensional Ising model. This can be defined on an 

N site square lattice of spacing a, with a spin O"i, taking the value ±1, assigned to 

each site. The energy of a specific configuration of spins is given by the Hamiltonian 

H = -J L (Ji(Jj - h L (Ji. 

(ij) 

(2.1.1) 

The notation (ij) indicates that the summation is taken over pairs of nearest-neighbour 

lattice sites. The first term, with coupling J, represents a ferromagnetic interaction 

between neighbouring spins and the second term represents the interaction with an 

external magnetic field h. 

The probability of a particular configuration with energy Ei at temperature T is 

given by the Boltzmann distribution: 

(2.1.2) 

where k8 is the Boltzmann constant. The normalisation, Z, is called the partition 

function and is given by the sum over all configurations: 

(2.1.3) 

This is a key function in statistical mechanics as it encodes many of the thermody

namic quantities. For example, the free energy of the system, F, is given by 

The magnetisation 1\1, which is the mean value of a single spin, is 

1 aF 
M=--

Noh 

(2.1.4) 

(2.1.5) 

and the magnetic susceptibility, which indicates how the magnetisation responds to 

a small external field is 

x= ~~~ . 
h=O 

(2.1.6) 

The heat capacity at constant volume is also related to the free energy: 

(2.1. 7) 
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and the specific heat is defined as the heat capacity per unit volume. These properties 

will all vary with the Boltzmann distribution, the fluctuations being of order 1/ VN. 
To avoid any problems that may arise with the finite lattice, the thermodynamic limit, 

N ---+ oo will be taken, in which these fluctuations disappear and the quantities above 

can be considered as exact variables. 

2.1.1 Critical Phenomena 

Consider the Ising model with no external magnetic field, I.e. with h = 0. At low 

temperatures, it is energetically favourable for the spins to align and so the material 

is said to be spontaneously magnetised. The lowest energy configuration, at zero 

temperature, will be doubly degenerate: the spins will either all point up ( + 1) or 

all point down ( -1). Assume for now that all the spins are pointing up. As the 

temperature increases some of the spins will use the additional energy to change 

direction so pockets of down spins will occur. The overall dominating spin will still 

be up but the spontaneous magnetisation will be reduced. Domains of down spin of 

all sizes will occur, up to some maximum size. The average domain size is known as 

the correlation length ~· 

As the temperature increases the domains of down spin, and hence the correlation 

length, continue to grow. At a specific temperature, known as the critical temperature 

Tc, the correlation length becomes infinite. At this point, although the magnetisation 

is continuous, its derivative with respect to the magnetic field, the susceptibility x, 
diverges. The system therefore undergoes a second order phase transition at this 

point. As the temperature is increased above Tc there will be domains of both up 

and down spin, but neither will dominate overall and the spontaneous magnetisation 

will be lost. 

Close to this critical point, many of the properties of the model simplify greatly. 

Instead of depending on the spin configurations they have a power law dependence 

on the distance from the critical point in the phase space, i.e. on IT-Tel or h. This is 

the case for the magnetisation, susceptibility and heat capacity. The pair correlation 

function, r(i- j) = (o-ia-1)- (a-i)(a-J), near this critical temperature, has a power 

law dependence on the distance between each pair of spins. The exponents of these 

power laws, known as critical exponents, are given in table 2.1. 
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Critical Exponent Property Exponent Value 

a C ex (T- Tc)-a 0 

(J !vf ex (Tc - T)f3 1/8 

I X ex (T- Tc)-"~ 7/4 

b Mexh 116 15 

lJ ~ex (T- Tc)-v 1 

7] f(i- j) ex li- jl-77 1/4 

Table 2.1: Critical exponents for the two-dimensional Ising model 

2.1.2 Renormalisation Group 

A remarkable fact in statistical mechanics is that all models fall into relatively few 

universality classes, which are characterised by their critical exponents. One of the 

main aims is therefore to find the critical exponents of a model and so determine 

its universality class. The renormalisation group provides a method of doing this by 

exploring the model close to the critical point. 

Here the real space, or block-spin, renormalisation of the Ising model will be 

discussed, following [6]. The general idea is that the physical properties of the system 

described above are long ranging, so if some of the microscopic detail of the model is 

lost, through coarse-graining, these properties should remain unchanged. 

To implement this coarse-graining one can perform a block spin transformation: 

group the lattice into 3 x 3 blocks and assign to each a block spin a' = ±1 to indicate 

whether the spins are predominantly up or down, as shown in the figure 2.1. The 

resulting lattice must now be rescaled by a factor of 3 so that the blocks are the size 

of the original lattice spacing. The result of this is that the correlation length reduces 

by a factor of the lattice spacing. At the critical point, since the correlation length 

is infinite, no matter how many times this transformation is applied, the physical 

properties will remain unchanged. This, however, is not the case away from this 

point. For T < Tc, this procedure acts to decrease the size of the domains of down 

spin so the system becomes more ordered. Similarly, for T > Tc, this reduces the 

domain size of both the up and down spins so neither dominates. This critical point 

is therefore an unstable fixed point of the renormalisation group. 

This procedure of coarse-graining can be described in a more mathematical way 
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~ 
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+ + 

+ 

3a 

Figure 2.1: A block spin transformation 

using the following operator, defined for each block as 

, { 1 if a' Li ai > 0 
T(a;a1 , .•. ,a9 ) = 

0 otherwise . 

After a block spin transformation, the new Hamiltonian is defined by 

e-H'(a') = L IT T(a'; ai)e-H(a) 

a blocks 

++ 
-+ 

a 

8 

(2.1.8) 

(2.1.9) 

where H is the reduced Hamiltonian, related to the usual Hamiltonian by H = 

H/kBT. Since the sum La' T(a'; ai) = 1, the partition function is not altered by this 

transformation. The physical properties described above are therefore also left un

changed; the only difference is that they should be expressed in terms of the blocked 

spins a', rather than the original a. 

Although the original Hamiltonian consists of only nearest neighbour interactions, 

this block-spin transformation could generate next-to-nearest neighbour interactions, 

denoted by l:i~J), and so on. The most general form of the new Hamiltonian is 

therefore 

(2) (3) 

H'(a') = -J~ L aiaj- J~ L aiaj- J~ L aiaj ... - h' L ai (2.1.10) 
(ij) (ij) (ij) 

and it is useful to think of the couplings, J{ as forming a vector J' = ( J~, J~, ... ) . 

The original Hamiltonian H can also be considered to depend on a similar vector 

J = ( J 1, J 2 , ... ) , although in this case Ji = 0 for i 2: 2. Since the partition functions 

of the two Hamiltonians, H and H', are equal there must be a relation between the 

vectors J and J'. The map between the two is given by the renormalisation group 
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transformation: 

J'=RJ. (2.1.11) 

Successive iterations of this map generate a sequence of points in the space of cou

plings, which is known as an RG trajectory. As mentioned earlier, critical points 

which have infinite correlation length correspond to stationary points of an RG tra

jectory, and so are called fixed points of the renormalisation group. 

The renormalisation group can be used to find the critical exponents by linearising 

the RG transformation at a fixed point. Assuming a fixed point exists at J*, and 

that R is differentiable at this point, then the following approximation can be made: 

J~- J; ~ LTab(Jb- J;), (2.1.12) 
b 

where Tab == 8J~j8JbiJ=h· The matrix T can be diagonalised, with eigenvalues ,Xi 

and corresponding eigenvectors vi, so 

L v~Tab = Ail!~. 
a 

These eigenvectors are used to define the scaling variables as ui 

which transform multiplicatively near the fixed point: 

a a,b 

L Aiv~(Jb- J;) = ,\iui. 
b 

(2.1.13) 

(2.1.14) 

The so called 'renormalisation group eigenvalues', Yi, are defined by ,Xi = aYi, 

where a is the lattice spacing. The behaviour of the scaling variable under an RG 

transformation depends on the sign of Yi: 

• If Yi > 0, ui is relevant: the RG trajectory flows away from the critical point 

• If Yi < 0, ui is irrelevant: the RG trajectory flows towards the critical point 

• If Yi = 0, ui is marginal: in this case the linear approximation around J* is not 

valid. 

The Ising model has two relevant scaling variables, Ut and uh, with the respective 

RG eigenvalues Yt and Yh. These variables are related to the only two free parameters 
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in the model: the reduced temperature t = (T- Tc)/Tc and the external magnetic 

field h. Since the partition function is invariant under a RG transformation, the free 

energy must also remain the same. To ensure this, the free energy per unit site must 

mcrease 

f(t', h') = a2 f(t, h). (2.1.15) 

Close to the critical point, the scaling variables can be taken to be proportional to 

the parameters t and h, so under the renormalisation group, t and h will transform 

according to (2.1.14). This leads to the scaling hypothesis 

(2.1.16) 

which can be used to find relations between the critical exponents. The first observa

tion to make, as mentioned in [5], is that c 21Yt f(t, h) is invariant under the scalings 

t ---+ aYt t and h ---+ aYh h and so it must depend only on the scale invariant variable 

hjtYh!Yt. The free energy per unit site can therefore be expressed as 

(2.1.17) 

for some function g. The critical exponents can now be found, in terms of the RG 

eigenvalues Yt and Yh, by differentiating f as follows: 

• The specific heat C = - T ~1=o = -A t 21Yt-2g"(O) so a= 2- 2/Yt 

• The spontaneous magnetisation ]\![ = - !li.l = t( 2-Yh)/Ytg'(O) so f] = 2-Yh 
Bh h=O Yt 

• The susceptibility x = 82 {I = t(2- 2Yh )/Yt g" ( 0) so 1 = 2Yh - 2 

Bh h=O ~ 

Other critical exponents can be found in a similar manner. 

2.1.3 Transfer Matrix 

The transfer matrix method is the analogue, in statistical mechanics, of the operator 

formalism in quantum field theory. It will be described here in terms of the Ising 

model, following the discussion presented in [5]. Taking the Ising model on a square 

lattice with m rows and n columns, the spin, aiJ at each site is now indexed by two 

integers, for the row and column numbers. Imposing periodic boundary conditions 

(and so defining the lattice on a torus): 

(2.1.18) 
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Let /-Li denote the configuration of spins on the ith row: /-Li = {ail, a-i2 , ... , a-in}. Each 

row configuration has its own energy 

n 

E[!-Li] = -J L a-ikai,k+l, 
k=l 

along with an interaction energy with neighbouring rows: 

n 

E[/-Li, /-Lj] = -J L a-ikajk. 
k=l 

(2.1.19) 

(2.1.20) 

Now, by defining a formal vector space of row configurations spanned by the states 

l!ti), the action of the transfer matrix T can be defined by its matrix elements 

(2.1.21) 

The partition function has a very simple form in terms of this operator T: 

/11 , ... ,/lm (2.1.22) 

In Euclidean quantum field theory, the analogue of the partition function 1s the 

generating function 

Z = J D¢e-S'[¢J, (2.1.23) 

where Sis the action which depends on a set of local fields [¢]. To move from this 

description to the operator formalism, constant time surfaces are specified and the 

operator U(t) = exp( -iHt) evolves states from time t0 tot+ t 0 . The transfer matrix 

plays the role of this operator, evolving states over a 'distance of time' equal to the 

lattice spacing a, and so one can define a Hamiltonian operator H by 

T -aH =e . (2.1.24) 

There is also a relation between the correlation length and the mass of the corre

sponding lattice quantum field theory: 

1 
~=-. 

rna 
(2.1.25) 

Close to a critical point the correlation functions are insensitive to the fine details 

of the underlying theory, i.e. to whether it is a discrete statistical model or a lattice 
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quantum field theory. They are also identical to the correlation functions of the 

corresponding continuum quantum field theory, so one can describe statistical models, 

near criticality, by quantum field theories. At the critical point, ~ -----> oo and the 

corresponding quantum field theory is massless. 

So far it is clear that a statistical model, at a critical point, is scale invariant. 

However, for a system with only local interactions Polyakov showed [7] that it is also 

invariant under the larger symmetry of conformal transformations, and so can be 

described in terms of a conformal field theory, which will be discussed in the next 

section. The idea is that information about all the possible universality classes can 

be gained by studying all possible conformal field theories. There are two advan

tages of this description: firstly, conformal invariance in two dimensions puts heavy 

constraints on the model, so it should be more tractable than the corresponding sta

tistical model, and secondly, by perturbing the conformal field theory it is possible 

to study the statistical model away from criticality. This is of particular interest in 

this thesis and will be discussed in more detail in section 2.3. 

2.2 Conformal Field Theory 

The connection between a statistical model at a critical point and a CFT was first 

made by Polykov in [7], but it was some years before the detailed structure of CFT 

was studied by Belavin, Polyakov and Zamolodchikov in [8], which paved the way for 

the large volume of work which subsequently followed. A brief outline of some of the 

main points is presented here, based on the reviews by Di Francesco et. al. [5] and 

Ginsparg [9]. More detail can be found in these texts and, for example, in [10]. 

A theory has conformal symmetry if it is invariant under transformations which 

leave the metric unchanged, up to a local scale factor 

This means that the angle between vectors is preserved. Under an infinitesimal 

coordinate transformation, x 11 -----> x'11 = x 11 + E11 , the metric transforms as 

(2.2.2) 

For this to be a conformal transformation 

(2.2.3) 
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where 0 ( x) = 1 - f ( x). Acting with ry11v on both sides, assuming the theory is d 

dimensional, f ( x) can be found to be 

(2.2.4) 

In d ~ 3 dimensions, the possible transformations are given by the Poincare group 

x'll 

the dilations 

and the special conformal transformations 

xll + bllx2 
x'll == ------=--~ 
· 1 - 2b.x + b2x 2 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

The two-dimensional case is somewhat special, due to the fact that the global 

transformations given here are supplemented by an infinite number of local trans

formations, which provide powerful constraints for the theory. Restricting to two 

dimensional Euclidean space, the metric becomes ry11 ,_, = ~11 ,_,, and the constraint in 

(2.2.3) reduces to the Cauchy-Riemann equations 

(2.2.9) 

This provides motivation to introduce the complex coordinates z and z with the 

relations 

z == x 1 + ix2 

1 
Oz = 2(81- io2) 

(2.2.10) 

(2.2.11) 

With this change of coordinates the Cauchy-Riemann equations become o2E = 0, 

oJ~ = 0, where E = E
1 + iE 2 and E = E

1 
- iE

2
, so in two dimensions, the group of 

conformal transformations is isomorphic to the infinite dimensional group of analytic 

transformations 

z ----t f(z), z ----t ](z). (2.2.12) 

The infinitesimal mappings z ----t z + E and z ----t z + E admit the Laurent expansions 

00 00 

E(z) = L CnZn+l, E(z) = L c~:zn+l (2.2.13) 
n=-oo n=-oo 
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around z = 0, so the infinitesimal conformal transformations can be locally generated 

by 

l n+1~ ~- -n+1~ 
n = -z Uz' n = -z Uz' 

which satisfy the commutation relations 

[ln, lm] 

[fnJm] 

(n- m)ln+m 

(n- m)ln+m 

(2.2.14) 

(2.2.15) 

This algebra is generally known as the Witt algebra. Following the presentation of 

[9], since ln and ~n commute, the algebra splits into a direct sum of two isomorphic 

subalgebras, generated by the holomorphic (ln) and anti-holomorphic (ln) generators 

respectively. Consequently, z and z can be thought of as independent coordinates, 

each taking values over the whole complex plane. Of course, to return to the physical 

case one must impose the condition z = z*. The physical theory is therefore invariant 

under transformations generated by (ln + ln) and i(ln - ln). 

The only infinitesimal generators to be globally well-defined on the Riemann 

sphere S 2 = C U oo, are { L 1, l0 , l t} U { L 1 ,[0 ,l1}, and so the subalgebra they generate 

is associated with the global conformal group. From the definition above one can see 

that L 1 and L 1 generate translations, (l0 + l0 ) and i(l0 - l0 ) generate dilations and 

rotations respectively, while h and l1 produce special conformal transformations. The 

finite transformations corresponding to the generators { l_ 1 , l 0 , h} form the group of 

projective conformal transformations S£(2, C)/'1!..2 , which can be written as 

az + b 
z ----t ' (2.2.16) 

cz +d 

where a, b, c, d E C and ad - be = 1. The same holds for the anti-holomorphic 

generators {f_1 , l0 , fi}. The global conformal algebra can be used to characterise the 

physical states. In fact, it will be useful to work in the basis of the eigenstates l0 and 

l0 , with the real eigenvalues h and h respectively. Since (l0 + l0 ) generates dilations 

and i(l0 - l0 ) rotations, the scaling dimension y and the spin s of the state can be 

defined as y = h + 11, and s = h - h,. 

The classical action of a field theory, under an infinitesimal conformal transfor

mation xJ.L ----+ x!L + EJ.L ( x), will have variation 

(2.2.17) 
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where T 1.w = Tv11 is the canonical energy-momentum tensor, which can always be 

made symmetric (see [5]). The theory is scale invariant if this tensor is traceless, and 

in turn this guarantees conformal invariance since bS = 0. In terms of the complex 

coordinates z and z, T/: has the form 

(2.2.18) 

(2.2.19) 

(2.2.20) 

the final equality results from the fact that Tj; = 0. Translation and rotation invari

ance requires that 811T 11v = 0, which in terms of the complex coordinates is 

(2.2.21) 

Since 82Tzz = 0, Tzz is a function of z alone (similarly T22 is a function of z) and 

so the energy-momentum tensor splits into an holomorphic and an anti-holomorphic 

part, often denoted T(z) = -27rTzz and T(z) = -21rT22 respectively. This property 

is assumed to hold when the theory is quantised. 

This quantum theory is expected to contain fields known as primary fields, which 

transform covariantly under any conformal transformation 

(2.2.22) 

The real exponents h and h are the conformal weights of the primary field </>j. Quasi

primary fields are those which transform as above for the global conformal trans

formations only. The energy momentum tensor is one example of a quasi-primary 

field. 

Under the local transformation z ----> z + t:( z), the holomorphic part of a primary 

field transforms as 

</>(z) ----> [8z(z + t:(z))]h</>(z + t:(z)) 

(1 + h8zt:(z) + t:(z)az + O(t:(z) 2))¢;(z), (2.2.23) 

so the variation of ¢;(z) (ignoring the anti-holomorphic part, which is equivalent) is 

b¢;(z) = h82 t:(z)¢;(z) + t:(z)8z</>(z). (2.2.24) 
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This transformation can be used to restrict the form taken by the correlation func

tions, as described in [9]. The two-point function G2(z1, Z1, Z2, z2) = (¢(z1, zl), ¢(z2, z2)) 

must be invariant under conformal transformations, so it must satisfy 

0 (2.2.25) 

This leads to 

(h10z1 E(z!) + E(zi)Oz1 + h20z2 E(z2) + E(z2)0z2 )G2(z1, Z1, Z2, Z2) 

+ (h10z1 £(z!) + £(z!)Oz1 + h20z2 E(z2) + £(z2)8zz)G2(z1, Z1, Z2, Z2) = 0. 
(2.2.26) 

Taking the holomorphic part alone, the infinitesimal transformations generated by 

L 1, l0 and l1 lead to the following constraints on G2(z1, z2): 

=> G2 depends only on Z12 = z1 - z2 

E - ?' - ~ 

The anti-holomorphic part can be examined in the same way. The two-point functions 

of primary and quasi-primary fields must therefore have the form 

- - 612 
G2(z1,z1,z2,z2) = 2h-2h' 

Z12 Z12 
(2.2.27) 

li2 = h, and the normalisation c12 has been set to 612· 

The three-point correlation function G3 = (¢1(z1, zl), ¢2(z2, z2), ¢3(z3, z3)) will be 

constrained in a similar way, and it can be shown that it must have the form 

(2.2.28) 

Higher correlation functions are not so simple to determine, and further conditions 

must be imposed in order to fix their forms. 

For a general field theory, the effect of an infinitesimal transformation on the 

correlation functions is given by the Ward identity. In a conformal field theory, 



2.2. Conformal Field Theory 17 

the three Ward identities corresponding to the translation, rotation and dilation 

transformations can be combined into one identity known as the conformal Ward 

identity: for the transformation xv ---> xv + Ev ( x) acting on a string of primary fields 

¢(xi) ... ¢( X 11 ), denoted here by X, this is given by 

6E(X) = { d2x811 (T1-1v(x)Ev(x)X), JM (2.2.29) 

where the domain M contains the positions of all the fields in the string X. This can 

also be written in terms of the complex variables z, z and T, T as 

1 i 1 i -6E,E'(X) = -. dz E(z)(T(z)X)- -. dz E(z)(T(z)X). 
2nz c 2m c 

(2.2.30) 

The integration contour, C, must enclose the positions of all the fields in X. 

In order to introduce an operator formalism, following [5], it is necessary to dis

tinguish between the time and space directions. In the statistical mechanics lattice 

models described earlier, one direction of the lattice was chosen to be 'space' and 

the orthogonal direction was taken as 'time'. In the continuum limit, there is more 

freedom in the choice of space and time directions. The usual choice, known as 'ra

dial quantisation' is described here: first, define the theory on an infinite cylinder 

of radius L, with the time coordinate x 1 running along the length of the cylinder 

and the space coordinate x2 compactified. In Euclidean space this cylinder is de

scribed by a single complex coordinate ~ = x 1 + ix2
. Now consider the conformal 

map~---> z = exp(2n~/ L). This maps the cylinder to the complex plane, as shown 

in figure 2.2. The infinite past and future on the cylinder, x 1 = =foo, are mapped to 

Figure 2.2: Radial quantisation. The concentric circles are surfaces of equal time. 

the points z = 0, oo on the plane respectively and equal time surfaces, x 1 = const, 

become circles of constant radius on the z-plane. 
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Concentrating on the holomorphic part of the primary field ¢( w), the conformal 

Ward identity for this field, within the radial quantisation scheme is 

(5¢(w)) = -.E(z)(T(z)¢(w)). i dz 

[z[>[w[ 2m, 
(2.2.31) 

The variation of ¢(w) was found in (2.2.24), and using this in the Ward identity, the 

short distance operator product expansion (OPE) of the T(z) with ¢(w) is found to 

be 
h¢(w) az¢(w) 

T(z)<P(w) = ( )2 + ( ) + ... z-w z-w 
(2.2.32) 

with the dots representing regular terms. The energy momentum tensor represents an 

energy density, so it should have scaling dimension 2 and spin 2. One would therefore 

expect T(z) to have conformal weights h = 2, h = 0, and T(z) to have h = 0, h = 2 

[5]. The OPE of T(z) with itself will have a similar form to (2.2.32), with h = 2, 

but since T(z) is a quasi-primary field, not a primary field, an extra term should be 

added: 
2T(w) azT(w) 

T(z)T(w) = (z _ w) 2 + (z _ w) + f(z, w) + ... (2.2.33) 

Now Tis expected to transform as T' = (8zg)- 2T(z) under the global transformation 

z-------+ g(z), so the transformation z-------+ w = 1/ z will produce 

(2.2.34) 

T(O) should always be finite and since T'(1/z) must be just as regular as T(z) this 

implies that T(z) must decay as z-4 as z-------+ oo [5]. The extra term in the OPE must 

therefore have the form 
c/2 

f(z, w) = (z- w)4' 

where c is a constant and the factor 1/2 is just convention. 

(2.2.35) 

Using the OPE of T(z)T(w) in the conformal Ward identity, the variation ofT 

under a local conformal transformation is given by 

-~ i dzt(z)T(z)T(w) 
27rz c 

1 i d ( ) ( 2 T(w) azT(w) c/2 ) 
-- 7 E Z + +---

2Jri c ~ (z-w)2 (z-w) (z-w)4 
c 

-2T(w)8wE(w)- E(w)8wT(w)- -8!E(w). 
12 

(2.2.36) 
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As shown in [5], this corresponds to sending T(z)----+ T'(w) under the finite transfor

mation z----+ w(z) where 

T'(w) = ( ~: r (T(z)- ;
2 

{w; z)}, (2.2.37) 

and { w; z} is the Schwarzian derivative given by 

(2.2.38) 

T(z) (equivalently T(z)) admits the mode expansion 

T(z) == L z-n-2 Ln, Ln = 2~i f dzzn+lT(z). 
nEZ 

(2.2.39) 

The commutator [Lm, ¢(w)] can be found using this mode expansion and the OPE 

T( z )¢( w) given in (2.2.32) as 

~ 1 dzzm+ 1T(z)¢(w)- ~ 1 dzzm+ 1¢(w)T(z) 
27f'l Jlzl>lwl 2m .fo<lzl<lwl 

_1 i dzzm+l ( h<;D(w) + az¢(w)) ( ) 
( )

2 ( ) 2.2.40 27fi c z - w z - w 

where Cis the contour enclosing w, as shown in figure 2.3. Using the mode expansion 

Figure 2.3: The contour C 

and the OPE of T(z)T(w), the commutation relations for Ln (and Ln) can be derived 

in a similar way (see [5] for details). The result is 

[Ln,Lm] 

[Ln,Lm] 

[Ln,Lm] 

c 2 
(n- m)Ln+m + 

12
n(n - 1)5n+m,O 

- c 2 -
(n- m)Ln+m + 

12
n(n - 1)6n+m,o 

0. 

(2.2.41) 

This is known as the Virasoro algebra and it is the central extension of the classical 

Witt algebra. For this reason, the constant c is often referred to as the central charge. 
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Notice that for the global symmetry generators L_ 1 , L0 and £ 1, this central extension 

disappears and the algebra reverts to the classical one. 

The theory is assumed to have a unique vacuum state, IO), which is invariant 

under global symmetries, so 

LniO) = 0, n ~ -1. (2.2.42) 

A state, I¢), can then be associated to each primary field ¢( z) with the definition 

1¢) = limz-.o ¢(z)IO). Using the commutator [L11 , ¢(z)] from (2.2.40) and the relation 

(2.2.42) it is easy to show (see [5]) that 

Lol¢) 

Lnl¢) 

limLo¢(z)IO) =hi¢) 
z--.0 

0, n > 0, 

(2.2.43) 

with equivalent relations holding for L0 I¢) and Ln I¢). This is a highest weight state of 

the Virasoro algebra and representations of this algebra can be built from these states 

in the following way: acting on 1¢) with the generators L 11 , n < 0, produces an infinite 

tower of states L_n
1 

••• L_nm 1¢), 1 ::; n 1 ::; ... ::; nm, known as left descendants. They 

are eigenstates of L0 with eigenvalues h' = h + n 1 + ... + nm = h + l, where l is known 

as the level of the descendant. An equivalent tower of right descendants is generated 

from 1¢) with the application of L11 , n < 0. The subset of the Hilbert space, spanned 

by the primary state 1¢) and its descendants, is closed under the action ofthe Virasoro 

generators and so it forms a representation of the Virasoro algebra known as a Verma 

module. 

The set of fields containing the primary field ¢ and its descendants is called a 

conformal family, denoted by [¢]. Since the generators Ln and Ln commute, each 

conformal family can be considered as a direct product of the space of left descen

dants, <I>, and right descendants, <I>, so any discussions can be restricted to the 'left' 

(holomorphic) sector with the understanding that equivalent statements will hold for 

the 'right' (anti-holomorphic) sector. 

The objects of interest in these theories are the correlation functions as these are 

the physically measurable quantities. Correlation functions between descendant fields 

can be expressed in terms of those between the primary fields only, so in order to solve 

the theory one needs to know all the correlation functions between the primary fields. 

For this it is necessary to know the operator algebra: the complete OPE (including 
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all regular terms) of all primary fields with each other. Applying this OPE within a 

correlation function reduces it to two-point functions which are known. 

By taking the limit as any two fields approach one another in the three-point 

correlation function (2.2.28), the OPE for primary fields can be expressed as 

The complete operator algebra of primary fields can be obtained from conformal 

symmetry once the central charge, c, the conformal dimensions of the primary fields, 

and the 3-point function coefficients Cijk are known. Out of these quantities, only 

the Cijk require some dynamical input to find; one often imposes crossing symmetry 

which, as described in [9], comes from the observation that the four point function 

can be evaluated in two ways. One can take z1 -----t z2 and z3 -----t Z4, shown pictorially 

on the left of figure 2.4. Alternatively, one could take z1 -----t z3 and z2 -----t Z4, shown 

on the right of figure 2.4. The equivalence of these two approaches puts constraints 

on the coefficients Cijk which, at least for the minimal models, introduced below, can 

be solved completely for C. 

LCilqcjmq X 
q . 

J m 

Figure 2.4: Crossing symmetry 

2.2.1 Null states and minimal models 

In some cases, a representation of the Virasoro algebra comprising some highest 

weight state 1¢) and its descendants is reducible. This means that there exists a 

subspace that is itself a representation of the Virasoro algebra, generated by a de

scendant lx) of 1¢) that is also a highest weight state: Lnlx) = 0, n > 0. The state 
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lx) is known as a singular or null vector. It is orthogonal to the whole Verma module 

as 

(2.2.45) 

using Hermitian conjugation, and its norm (xlx) = 0. In fact, all descendants of 

lx) also have zero norm and are orthogonal to all states in the Verma module of the 

same level. An irreducible representation may be constructed by quotienting out of 

the Verma module the null submodule, i.e. by identifying states that differ only by 

a state of zero norm. 

To each Verma module, one can associate a function X(c,h) ( T) called the character 

of the module: 
()() 

X(c,h) ( T) = Tr qLo-c/24 = L dim( l)ql+h-c/24 

1=0 

(2.2.46) 

where dim(l) is the number of linearly independent states at level l, T is a complex 

variable such that (_}m T > 0 and q = e2
1rir. These characters are generating functions 

for the level degeneracy dim(l), so knowing the character amounts to knowing how 

many states there are at each level. 

Another quantity to determine the number of linearly independent vectors in 

the Verma module at level! is the Gram matrix, fi{Ul(c, h), built of inner products 

between all basis states: 

(2.2.47) 

with ni, mi 2: 0 and 2::7= 1 ni = L~=l mi = l. If det fi{Ul(c, h) vanishes then one can 

conclude that there are null vectors at level l. If the determinant is negative there 

must be states with a negative norm present so the representation is not unitary. A 

general formula for this determinant was found by Kac [11] (and proven by Feigin 

and Fuchs in [12]): 

det M(l) = 0:[ II [h - hr,s]P(l-rs) . 

r,s>l 
rs~l 

(2.2.48) 

P(l- rs) is the number of partitions of the integer l- rs and o:1 is a positive constant 

independent of h and c 

O:t = IT [ (2r )s s!]m(r,s) 

r,s?.l 
rs-::;1 

(2.2.49) 
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with m(r, s) = P(l- rs)- P(l- r(s + 1)). The roots of this determinant can be 

expressed by first reparametrising c in terms of the (possibly complex) quantity 

(2.2.50) 

The hr,s ( m) are then given by 

h (m) _ .:_:[(_m_+_1)--,-r_-_m------,--s]_2 _-_1 
r,s - 4m(m + 1) ' (2.2.51) 

and, in this notation, the central charge becomes 

6 
c=1-----

m(m + 1) · 
(2.2.52) 

The existence of null states also puts a constraint on the operator algebra which 

becomes 
k=r1 +r2-l 

¢(q,si) X ¢(r2,s2) = L 
l=s1 +s2-l 

:I: ¢(k,l)· 

k=l+lr1-r2l l=l+ls1-s2l 
k+r1 +r2=l mod2l+s1 +s2=l mod2 

step 2 step 2 

(2.2.53) 

These are known as fusion rules. This notation means that the OPE of ¢(ri,si) with 

¢(r2 ,s2 ) (or their descendant fields) may contain terms belonging to the conformal 

families of ¢(k,l) on the RHS. In general, a conformal family [¢(r,s)], with r, s arbitrarily 

large, can be generated by repeatedly applying (2.2.53) which implies that there are 

an infinite number of conformal families in the theory. However, if the central charge 

can be expressed in terms of two coprime integers p, p' as 

(p- p')2 
c = 1 - 6 ...:..:._______::_---'---

pp' 

then the conformal weights become 

(pr - p' s) 2 - (p - p') 2 
h = ~--~-...:..:.____-~ 

r,s 4 pp' , 

which has the periodicity properties 

hr+p',s+p = hr,s, hr,s = hp'-r,p-s· 

(2.2.54) 

(2.2.55) 

(2.2.56) 

The integers p and p' can be taken to be positive and without a loss of generality it 

can be assumed that p > p'. They are related to the parameter m by 

p' 
7n=-

p- p' 
(2.2.57) 
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where the positive branch of m in (2.2.50) has been chosen. It can easily be shown 

that hr,s also satisfies the identities: 

hr,s + TS hp'+r,p-s = hp'-r,p+s (2.2.58) 

hr,s + (p'- T)(p- s) hr,2p-s = h2p'-r,s· 

From (2.2.58) it is clear that the null vectors at levels TS and (p' - T) (p - s) are 

themselves highest weights of degenerate Verma modules. These two null vectors 

will give rise to submodules that also contain null vectors of the same form, and 

so on. There will therefore be an infinite number of null vectors within the Verma 

module. The existence of each of these null vectors imposes a constraint on the 

operator algebra and the result is a Verma module consisting of a finite number of 

conformal families. The corresponding conformal weights are hr,s with 1 :S: T :S: p' - 1 

and 1 :S: s :S: p - 1, but because of the symmetry hr,s = hp'-r,p-s, there are only 

(p-1)(p'-1)/2 fields in the theory with cP(r,s) = cP(p'-r,p-s)· To avoid double counting 

one often takes p' s < pT. The pairs ( T, s) are known as Kac labels and Ep,p' denotes 

the set of such pairs in the range described here. These theories are the minimal 

models, usually denoted by M(p,p')· 

The fusion rules given in (2.2.53) can be expressed in the form of the fusion algebm 

cPi X cPJ = l::Ni~cPk (2.2.59) 
k 

where the Ni~ are integers. Here the indices i, j, k label the primary fields. For the 

minimal models, they can be replaced by the Kac labels ( T, s) but the concept of the 

fusion algebra can be applied to more general models which will be discussed later. 

This algebra is commutative and associative, with the identity element ¢1 = I the 

identity field, so NA = bik· Commutativity implies that Ni~ is symmetric in i and j. 

Using this, along with the associativity cPi x ( cP] x cPk) = ( cPi x cPj) x cPk leads to the 

expression 

L NLj NiT = L Njj N{f: . (2.2.60) 
I l 

By defining a matrix with the entries (Ni)j = Ni~' this condition can be rephrased as 

NiNk = L NfkNl 
l 

(2.2.61) 
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so the Ni form a matrix representation of the fusion rules. They can be simultaneously 

diagonalised and their eigenvalues then form one dimensional representations of the 

fusion rules. 

The full Hilbert space of the CFT is given by 

1t = E9nh,hvh ® vh 

h,h 

(2.2.62) 

where the non-negative integers nh,h specify how many distinct primary fields of 

weight (h, h) there are in the CFT. The fusion algebra, shown above, indicates which 

values of (h, h) are consistent with the CFT, but not which ones actually occur. 

For this one needs the extra constraints imposed when the theory is required to be 

modular invariant on the torus. This was first suggested by Cardy in [13]. 

2.2.2 Finite size effects 

Now, consider a CFT on a complex plane and map this to a cylinder of circumference 

L with the transformation z ---> w = 2~ ln z. The Schwarzian derivative is { w; z} = 

1/2z2 and using (2.2.37), the energy-momentum tensor on the cylinder Tcy1(w) can 

be related to that on the plane, Tplane by 

T,~1 (w) = c; )' ( Tplane(z)z'- ;
4

) (2.2.63) 

Assuming that the vacuum energy density (Tplane) vanishes on the plane, taking the 

expectation value of the above gives a nonzero vacuum energy density on the cylinder 

C7r2 

(Tcyl(w)) = -
6

L2 . (2.2.64) 

The change in energy brought about by imposing these boundary conditions is known 

as the Casimir energy. The relation between this and the central charge can now be 

used to show that c is also related to the free energy. When the metric tensor is 

changed the free energy F varies as 

(2.2.65) 

In this cylindrical geometry, an infinitesimal scaling of the circumference bL = EL 

corresponds to the coordinate variation bz0 = Ez0 and bz1 = 0, where z0 runs around 

the cylinder and z1 along it. The metric tensor then varies as bg1w = -2Eb110bvo· Now 

00 ) 1 ) 7rC (T ) = (Tzz) + (Tzz = -;(T(z) = 
6

£ 2 
(2.2.66) 
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so the variation of the free energy is 

6F = J d od 1 nc 6L 
z z 6£2 L . 
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(2.2.67) 

The integration over z0 introduces a factor of L, whereas the integration over z1 can 

be avoided by considering the free energy per unit length, FL, which varies as 

Integrating this then leads to 
7fC 

FL = --. 
6L 

(2.2.68) 

(2.2.69) 

The central charge also appears in the Hamiltonian for the CFT on the cylinder, 

where z = exp(x1 + ix2
). Here dilations z - eaz become time translations x 1 

-----+ 

x 1 +a therefore the dilation generator on the conformal plane can be regarded as the 

Hamiltonian for the system: 

27f ( - ) H = L (Lo)cyl + (Lo)cyl (2.2.70) 

Substituting the mode expansion Tptane( z) = L z-n-2 Ln into the relation (2.2.63) 

gives 

where w = 
2
: lnz. Therefore the translation generator (Lo)cyt on the cylinder, in 

terms of the dilation generator L 0 on the plane is 

so the Hamiltonian is 

c 
(Lo)cyl = Lo-

24
, 

27f ( - c ) H = L Lo + Lo -
12 

, 

(2.2. 72) 

(2.2. 73) 

where the constant term c/12 ensures that the vacuum energy vanishes in the L -----+ oo 

limit. The momentum generates translations along the circumference of the cylinder 

so this can be written as 

2ni ( - ) 2ni ( - ) P = L (Lo)cyl- (Lo)cyl = L Lo- Lo . (2.2.74) 

For a CFT on the entire complex plane the holomorphic and anti-holomorphic 

sectors completely decouple and can be studied separately. However requiring the 
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theory to be consistent on a torus puts useful constraints theory which will now be 

discussed. This follows closely the presentation given in [5]. 

Define a torus by specifying two linearly independent vectors on the complex 

plane, and identify points which differ by an integer combination of these vectors. 

These vectors can be represented by two complex numbers w1 and w2 , which are the 

periods of the torus. Next the space and time directions must be defined. Here space 

is taken along the real axis, and time along the imaginary axis. The Hamiltonian, 

H, and total momentum, P, of the theory generate translations along the time and 

space directions respectively so the operator which translates the system parallel to 

the period w2 , over a distance a in Euclidean space-time is given by 

(2.2.75) 

If a is the lattice spacing in a statistical mechanics problem then this translation 

will go from one row of the lattice to the next, parallel to w2 . If a complete period 

contains m lattice spacings, so lw21 = ma, then the partition function is obtained by 

taking the trace of the translation operator to the mth power: 

(2.2. 76) 

Now to express Hand Pin terms of the Virasoro generators £ 0 and L0 it is useful to 

consider the torus as cylinder of finite length with the ends identified. Recall that on 

a cylinder of circumference L the Hamiltonian isH= (27r/L)(£0 + L0 - c/12) and 

the momentum is P = (27ri/ L)(L0 - L0 ). Here w1 = L, so in terms of the ratio of 

periods T = w2/w1 , known as the modular parameter, the partition functions is 

Z(T) Tr exp[1ri{(T- f)(£0 + L0 - c/12) + (T + f)(£0 - L0 )}] 

Tr exp[27ri{ T(L0 - c/24) - f(Lo- c/24)} ]. 

Defining the parameters 

the partition function can be expressed as 

which involves the characters described in (2.2.46). 

(2.2.77) 

(2.2. 78) 

(2.2. 79) 
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For a CFT to be sensible on a torus its partition function must be independent of 

the choice of periods w1,2 of the torus. Let w~.2 be two periods, describing the same 

lattice as w1,2 . Since w~.2 are points on the lattice they must be integer combinations 

of w1,2 : 

( ::) ( : : ) ( :: ) (2.2.80) 

with a, b, e, d E Z and ad - be = 1. This matrix should have an inverse with integer 

entries, since w1,2 must also be expressed in terms of w~. 2 in the same way. Also, 

as the unit cell of the lattice must have the same area, regardless of the choice of 

periods, this matrix must have unit determinant and so these matrices form the group 

SL(2, Z). Under this change of period, the modular parameter transforms as 

aT+b 
T ----+ , ad - be = 1 . 

eT+d 
(2.2.81) 

Since this is invariant under a sign change of all the parameters a, b, e and d, the 

relevant symmetry, known as the modular group, is PSL(2, Z) = SL(2, Z)/Z2 . 

The generators of this group can be considered geometrically as the cutting of 

the torus along one of the non-trivial cycles and gluing back, after a twist by 21r, as 

described in [9]. Cutting along a line of constant time, x 1
, and re-gluing corresponds 

to transformation T : T ----+ T + 1. A similar operation performed along a line of fixed 

x 2 is equivalent to the transformation U : T ----+ T / ( T + 1). The generators that are 

usually considered are 

T 

which satisfy 5 2 = (ST) 3 = 1. 

T---+T+1 
1 

T----+ -
T 

(2.2.82) 

(2.2.83) 

Recall that the Hilbert space of a minimal model with central charge e can be 

decomposed into left and right Virasoro modules: 

1{ = E9 nh,h vh ® vii . 
h,h. 

The torus partition function is given by 

Z(T) = L nh,JiXh(T)XJi(f) 
h,h 

(2.2.84) 

(2.2.85) 
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in terms of the Virasoro characters 

Xh(T) = Trvh(qLo-c/24) = qh-c/24 Ld(n)qn. 
n2':0 

The action of T on the minimal characters is 

Xr,s(T + 1) = L Trs,paXp,a(T) 

(p,a)EEp,p' 

where 

T. = b b e2in(hr,s -c/24) 
rs,pa r,p s,a 
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(2.2.86) 

(2.2.87) 

(2.2.88) 

with the conformal dimensions given by the Kac formula (2.2.55). The modular 

transformation S acts on the characters as 

where 

Xr,s( -1/T) = L Srs,paXp,a 

(p,a)EEp,p' 

Srs,pa = 2 {2 ( -1) l+sp+ra sin (7f P r p) sin (7fp' sa) v Pi' p' p 

is known as the modular S matrix [13][14]. 

(2.2.89) 

(2.2.90) 

The requirement that the partition function be invariant under the transforma-

tions generated by T and S puts constraints on the multiplicities nh,r, which are 

described below following [5]. There is also an additional requirement (at least for a 

unitary theory) that the nh,h be non-negative integers, and that the identity operator 

appear just once, so n0 ,o = 1. 

The T invariance is the weakest condition. This restricts the left-right association 

of modules by 

h - h = 0 , mod 1 . (2.2.91) 

An obvious solution to this is h = h which leads to a 'diagonal' partition function 

Z = L 1Xr,sl
2 

· (2.2.92) 

(r,s)EEp,p' 

Since S is unitary this is modular invariant. The operator content of this theory can 

be read off from the partition function: each field in the Kac table E(p, p') appears 

exactly once in the combination <I>(r,s) = c/.>(r,s) ® ~(r,s)· This is known as the minimal 

model M(p,p'). The simplest such unitary minimal model is M(4,3), with central 
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charge c = 1/2 and this can be shown to correspond to the critical Ising model. 

The continuum version of the critical Ising model has three operators: the identity 

n with conformal dimension (0, 0), the spin O" (the continuum version of the lattice 

spin O"i) and the energy density, or thermal operator, E (the continuum version of the 

interaction energy O"iO"i+ I). The exponents rJ and v can be defined in terms of the 

critical correlators 

(2.2.93) 

In table 2.1, these exponents are given as rJ = 1/4 and v = 1 and with the form of 

the two point function for primary fields (2.2.27), assuming that the fields O" and E 

have no spin ( h = h), their conformal dimensions must be 

- ( 1 1) - (1 1) (h,h)a = 16' 16 '(h,h)E: = 2' 2 (2.2.94) 

The operator-field correspondence is given in table 2.2 restricting to the holomorphic 

part for simplicity. 

Kac labels ( 1·, s) Conformal Dimension h Operator 

(1,1) or (2,3) 0 n Identity 

(2, 2) or (1, 2) 1 
O" Spin 16 

(2, 1) or (1, 3) 1 
E Thermal operator 2 

Table 2.2: Operator-field correspondence for the critical Ising model 

Minimal models also exist where not all of the possible fields from the Kac table 

are present. One example of this is the three-state Potts model. This is related to 

the M(6, 5) model, but only the fields ¢cr,s) with s = 1, 3, 5 are present in the theory. 

In order to find modular invariants one can group the fields into blocks which have 

the required transformation properties. It can be shown that the characters for the 

relevant blocks are 

Xr,1(T) + Xr,5(T) 

Xr,3(T) 

(2.2.95) 
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and the modular invariant partition function [14] is 

(2.2.96) 
r=1,2 

L {lxr,l + Xr,51 2 + 2lxr,31 2
} . 

r=1,2 

This shows that only the operators ¢(r,s) with s = 1, 5 and r = 1, 2 are present in the 

theory along with two copies of ¢(r,3) with r = 1, 2. This multiplicity 2 indicates that 

the three-state Potts model is not a subtheory of the M(6, 5) model but actually has 

a larger symmetry algebra, known as the W3 algebra, of which the Virasoro algebra 

is a subalgebra. The block-characters given above are the characters with respect 

to this extended algebra and the partition function is 'diagonal' when written in 

terms of these. Theories of this form are therefore known as block-diagonal. Further 

discussion of extended algebras will be given in Section 4.2. The search for these 

modular invariant partition functions began in [14]. A full 'ADE' classification for 

the minimal models was conjectured by Cappelli, Itzykson and Zuber in [15] , which 

was later proved in [16] [17]. 

There is an important relation between the modular S matrices and the fusion 

algebra which was first proposed by Verlinde in [18], and later proven in [19],[20]. 

This states that S diagonalises the fusion rules, i.e. Ni~ = l:n SjnA;n) Snk. where >..;n) 

are the eigenvalues of the matrix Ni· This relation can be used to solve for the Ni~' 

in terms of the matrix S: first label the identity by i = 0 so Nij = bj, then the 

eigenvalues )..~n) must satisfy )..~n) = Sin/ Son- The Verlinde formula then follows: 

This will be of use later on. 

Nk. = ""'SinSjnSnk 
t) L S . 

n On 

2.3 Perturbed CFT 

(2.2.97) 

As mentioned earlier, conformal field theories can be used to describe statistical 

models at their critical points. One advantage to this description is that it is possible 

to perturb a CFT in such a way that it remains integrable, which allows the statistical 

model to be studied away from criticality. Such integrable perturbations were first 

shown to exist by Zamolodchikov in [21]. This section contains a brief review of this 

work. 
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Integrability of conformal field theory is guaranteed by the existence of an infi

nite number of conserved charges provided by the holomorphic and anti-holomorphic 

components of the stress energy tensor and other descendants of the identity. The 

identity operator I is the unique primary field with weights (0, 0). Its conformal fam

ily can be split into holomorphic and antiholomorphic sectors and the space of left 

descendants of I will be denoted by A. The operator L0 can be used to decompose 

this into subspaces As, labelled by spin s 

0 

(2.3.1) 

(2.3.2) 

(2.3.3) 

Each field Ts E As has conformal weight ( s, 0) and so spin s. Since it is holomorphic 

it follows that 

(2.3.4) 

so an infinite number of conserved charges can be defined: 

f Ts(c;)(c;- z)n+s- 1dc;, n = 0, ±1, ±2, ... (2.3.5) 

Not all of these conserved charges will be linearly independent as some of the fields 

Ts may be total derivatives, but these fields can be avoided by considering the factor 

space 

which can be decomposed as before 

0. 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 

Once conformal symmetry is broken one would expect these conserved charges 

to no longer exist and integrability to be lost. However, Zamolodchikov [21] has 

argued that for certain perturbations of conformal field theory, a sufficient number 

of conserved charges remain to allow all the states in the theory to be identified and 
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hence the theory to still be considered integrable. An outline of his argument is 

provided here. Consider a perturbation of a conformal field theory with an action 

related to that of the CFT by 

(2.3.10) 

where¢ is a field in the CFT with conformal weight (h, h), and so scaling dimension 

2h. The coupling constant, A, has conformal dimension (1- h, 1- h) (scaling dimen

sion y = 2(1- h)). For a relevant perturbation, y > 0 so¢ is a relevant operator if 

h < 1. When A -/:- 0, Ts will no longer satisfy (2.3.4). Instead OzTs can be expanded 

in a Taylor series 

(2.3.11) 

where the R~r:}1 are assumed to be fields belonging to the CFT. The dimensions of 

OzTs and A are (s, 1) and (1- h, 1- h) respectively, so by comparing dimensions it 

is clear that the fields R~rt]1 must have dimension 

[R~r:}1 ] = (s- n(1- h), 1- n(1- h)). (2.3.12) 

For n large enough, 1 - n(1 ~ h) < 0. However, all fields in unitary theories have 

positive conformal dimensions, so this series must terminate. This argument can 

clearly be extended to any non-unitary theories where the conformal dimensions of 

the fields are bounded from below. The only possible terms in the series are those 

fields in the CFT with conformal dimension 

1- n(1- h)=~ (2.3.13) 

which are easily identified as the dimensions of all the fields are known. In many 

cases, only the first term, with n = 1, is possible in which case 

(2.3.14) 

where R~~~ has dimension (h + s- 1, h) and so is a left descendant of the perturbing 

field ¢. The space, <P, of all left descendants of ¢ can be decomposed in the same 

way as A: 
00 

(2.3.15) 
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where 

so f}2 can be considered as the linear map 

~ 

For Ts to be non-trivial, it must be non-zero in A 
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(2.3.16) 

(2.3.17) 

(2.3.18) 

A/ L_ 1A and for it to be a 

conserved charge, R~~1 must be a. total z-derivative, i.e. it must lie in L_1 <I>. Its 

projection onto ii> = <I>/ L_1 <I> must then be zero, so it must therefore lie in the kernel 

of the map 

(2.3.19) 

Conversely, if the kernel of this mapping is nonzero then a conserved charge must 

exist. This problem then boils down to checking the dimensions of the spaces As and 

<I>s_ 1: the kernel will be nonzero, and so a. conserved charge will exist, provided 

~ 

dim As > dim <I>s-1· (2.3.20) 

Using this method, Zamolodchikov demonstrated the existence of a whole series of 

conserved charges for the minimal models perturbed by the operators ¢13 , ¢12 and 

¢21 and so conjectured that these perturbations are integrable. 

The continuity equation 8/LTJ.Lv = 0 for the stress energy tensor, written in coor

dinates z, z is 

(2.3.21) 

where 8 = -Tzz· This ensures the conservation of momentum of the theory, with IM 

(2.3.22) 

Following this notation, the higher spin integrals of motion of the perturbed theory 

are 

Ps = f[Ts+1dz + 8s-1dz] 

where the local fields Ts+ 1 and 8s_ 1 satisfy the relation 

(2.3.23) 

(2.3.24) 

A priori there is no reason why one cannot perturb a CFT by two or more relevant 

operators simultaneously. However, for the models of interest in this thesis, such a 

perturbation will not result in an integrable theory. 
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2.4 S matrices 

For many cases, perturbing a CFT will result in a massive theory which, in the in

frared region, can be described in terms of an S-matrix. In this section the constraints 

on this S-matrix, due to integrability, will be described and the method of building an 

S-matrix using the knowledge of the conserved charges of the theory will be discussed. 

Note that this S-matrix approach is naturally described in ( 1 + 1) Minkowski space, 

while the CFT description above was given in 2 dimensional Euclidean space. This 

discussion is based on the original paper by Zamolodchikov and Zamolodchikov [22], 

but mainly follows the review by Dorey [23]. 

Consider a theory with n particles, each with a different mass ma, a = 1, ... , n. 

These particles are on-shell when their light-cone momenta Pa, f5a satisfy the condition 

PaPa = m;. It will be convenient to parametrise these momenta in terms of the 

rapidity Ba 

(2.4.1) 

Denoting a particle of type ai, moving with rapidity ei, by AaJei), an n-particle 

asymptotic state can be written as 

(2.4.2) 

An in state, is a state where there are no further interactions as t ---+ -oo so the 

particles must be ordered by rapidity, with the fastest on the left and the slowest 

on the right. Similarly, if there are no more interactions as t ---+ oo, then the state 

is known as an out state, with the order of rapidities reversed. By considering the 

Aa;(ei) as non-commuting symbols, the notation can be simplified and the in and out 

states can be written as 

(2.4.3) 

with e1 > e2 > ... en and e1 < e2 < ... en respectively. 

The S-matrix is a mapping between the in-state basis and the out-state basis. 

Given a 2-particle in state this is 

00 

Aal (OI)Aaz(e2) = L L s~~~~bn(e1, e2; e~, ... 'en)Abl (e~) ... AbJe~) (2.4.4) 
n=2 e; < .. <0;, 

where a sum on b1 ... bn is implied and the sum on the e~ will, in general, involve a 

number of integrals. The rapidities are also constrained by momentum conservation. 
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A conserved charge, Qs of spin s acts on a one-particle state as 

(2.4.5) 

Considering only local conserved charges, which are integrals of local densities, their 

action on multiparticle wavepackets is additive: 

(2.4.6) 

The momentum operator ( QI) will act on a state by shifting all the particles by a 

fixed amount. However, in general, the higher spin operators will shift particles by 

an amount dependent on their initial rapidity. Parke [24], using this argument, found 

that provided there exists a couple of conserved charges with spin s > 1, then the 

scattering matrix for a 1 + 1 dimensional theory has several constraints placed upon 

it: 

• there is no particle production 

• the initial and final sets of momenta are equal 

• the S-matrix factorises into a product of 2 -----+ 2 S-matrices. 

These constraints are particular to 1 + 1 dimensions; for higher dimensions, the 

Coleman-Mandula theorem [25] states that the existence of a conserved charge of 

spin s 2: 2 leads to a trivial S-matrix. 

From these constraints, it is clear that the fundamental object is the 2 -----+ 2 S

matrix, Aa1 (8I)Aa2 (82 ) = 5~~~;(81 - 82)Ab1 (8I)Ab2 (82). Once this is known for all 

particles then the full S-matrix is known. As a Lorentz boost shifts the rapidities by 

a constant, the S-matrix will depend on rapidity difference, 812 = 81 - 82 , only. 

Figure 2.5: The two particle S-matrix 

In a theory with n particles, there are n4 functions S~~~;, however not all of these 

will be independent. Firstly, momentum conservation demands that ma 1 = mh and 
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ma2 = mb2 , so unless there is a degenerate mass spectrum a 1 = b1 and a2 = b2. It is 

also assumed that P, C and T symmetries hold which impose the condition 

(2.4.7) 

The analytic properties of the S-matrix are most easily understood when described 

in terms of the Mandelstam variables 

(2.4.8) 

where s+t+u = ~:=l mi. Here p1 and p2 are the momenta of the incoming particles 

and p3 and p4 that of the outgoers. In 1 + 1 dimensions only one of these variables 

is independent, so choosing s and writing it in terms of the rapidities 

(2.4.9) 

For a physical process, the rapidities are real and so s must be real and s ;::: ( mi +m1 )
2

. 

Continuing S into the complex plane it is single valued, once suitable cuts, as shown 

in figure 2.6, have been made. S(s) is real for real s satisfying (mi - m1)2 ~ s ~ 

( mi + m1 )
2 and physical values occur for s = s+ just above the right hand cut, 

as shown in figure 2.6. S(s) is also real-analytic, 1.e. St1(s*) = (Sf}(s))* holds, 

cut ~ 
====- X X X X 

Physical 
Values 

/cut 

-===== 
(m-+m-) 2 

I J 

Figure 2.6: Cuts in the complex plane 

where * denotes complex-conjugate. Unitarity requires that for physical values of s 

(s+ = s + iE, E ---+ 0, s > (mi + rn1)2
), S(s)St(s) = 1. Since there is no particle 

production in this case this corresponds to 

(2.4.10) 

and using the real-analycity property this becomes 

(2.4.11) 
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where s- = s - iE, E ---. 0. 

Having so far discussed only the right hand cut, the left hand can be understood 

using the relativistic property of crossing. This involves taking particles involved in 

an interaction and inverting their paths in time so that incoming particles become 

outgoing and vice versa. If one incoming particle and one outgoing particle are 

simultaneously "crossed" then the result should be another physical process. Here 

this corresponds to looking at the diagram 2.5 from the side, so the forward channel 

momenta is t = (p1 - p3 )
2

, rather than s. Since p2 = p3 here, there is a simple relation 

between s and t 

(2.4.12) 

The amplitude for this process can be obtained from the previous amplitude by 

analytic continuation into a region where t is now physical. This is where t is real 

and t 2: (rni + rn1)2 which corresponds to s ::; (rni- rn1)2
. Physical amplitudes 

correspond to approaching this from above in t, and so from below in s, therefore 

they occur on the lower edge of the left hand cut in figure 2.6. So this is just 

(2.4.13) 

which simplifies when written in terms of the rapidity e, using the transformation 

e = (2.4.14) 

This maps the physical sheet into the physical strip 0 ::; t.Srn e ::; 1r, with the unphys

ical sheets mapped into the strips n1r ::; t.Srn e ::; ( n + 1 )1r. The cuts open up and the 

branch points go to 0 and 1r. Rewriting the constaints in terms of e: 

• Real ana.lycity: S(e) is real fore purely imaginary 

• Unitarity· snm(e)Sk1 (-e) = <5k<51 
· t) nm t J 

• Crossing: st1 (e) = S~f ( i1r - e). 

The factorisation property also gives rise to the Yang-Baxter equation 

(2.4.15) 
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"' 
e ~ ~ 

al a, a, al a, a, 

Figure 2. 7: The Yang-Baxter equation 

shown diagrammatically in figure 2. 7. This constraint, along with the properties 

above usually allow the S-matrix to be fixed, up to the "CDD" ambiguity 

(2.4.16) 

where the CDD factor must satisfy 

<I>(O) = <I>(i1r- 0), <I>(O)<I>(-0) = 1. (2.4.17) 

Further restrictions come from the bootstrap. The discussion of this will be restricted 

to the purely elastic scattering theories (PEST) as they are the only theories of 

concern in the remainder of this thesis. These are theories with no degeneracy in the 

spectrum so the scattering is diagonal. The S matrix for these theories needs only 

two indices and the unitarity condition becomes 

(2.4.18) 

and the crossing symmetry is 

(2.4.19) 

Combining these two constraints reveals the periodicity of the S-matrix 

(2.4.20) 

The Yang-Baxter equation is trivially satisfied for these theories. 

Simple poles in the physical strip of an S-matrix element are often associated 

with bound states in the spectrum. This is not always the case; exceptions will be 

mentioned later. A bound state occurring in the forward (s) channel, with fusing 
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angle Ui~ will correspond to a simple pole in the physical strip, at (}ij = iUi~· Around 

this pole the S-matrix can be considered as 

CijkCijk 

sij(e) ~ ·i e . k 
-zU. 

Z] 

(2.4.21) 

where Cijk is the three point coupling associated with the bound state. For unitary 

theories this three point coupling is real and so this pole will have a positive residue 

and will always be paired with another simple pole, at (}ij = 1r - iUi~' with negative 

residue, corresponding to the same bound state in the crossed ( t) channel, see fig

ure 2.8. For non-unitary theories, the distinction between the forward and crossed 

m 

m 

forward channel crossed channel 

Figure 2.8: A bound state, shown in the forward and crossed channels 

channels is not so clear as the residues will not necessarily be positive and negative 

respectively since Cijk will not always be real. The intermediate particle k is on-shell, 

so should be long-lived, and by the boostrap principle, is expected to be one of the 

other asymptotic one-particle states of the model. For the forward channel process, 

since the internal particle k is on-shell, s = m% and so 

(2.4.22) 

This implies that Ui~ is the exterior angle of a 'mass triangle' of sides mi, mj and mko 

shown in figure 2.9. Therefore the fusing angles satisfy 

(2.4.23) 

as one might expect from figure 2.8. 

If a third particle interacts with a bound state, this interaction could occur before 

or after the bound state is formed. However, the factorisation condition implies that 

these cases cannot be distinguished, which leads to the bootstrap equation 

(2.4.24) 
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Figure 2.9: The mass triangle 

k ~ 
~, 

Figure 2.10: The bootstrap 

where 0 = 1r- U. This is shown pictorially in figure 2.10. There is an equivalent 

constraint for the conserved charges which comes about when one considers the action 

of one of the conserved charges, given by (2.4.6), on the state before and after fusing. 

Equating these leads to the conserved charge bootstrap 

(2.4.25) 

which can be put into a symmetrical form, using q~s) = ( -1) 8 +1qks) 

(s) + (s) isUk + (s) is(Uk +U\) 0 qi qJ e 'J qk e 'J J = . (2.4.26) 

So far only simple poles have been discussed, but higher order poles also occur 

m S-matrix elements. The explanation for these poles is given by the Coleman

Thun mechanism [26]; the discussion of this presented here follows [27]. For a given 

Feynman diagram, if the external momenta are such that one or more of the internal 

propagators are on-shell then the loop integrals will give rise to a singularity in 

the amplitude. The bound states described here are examples of this, where one 

propagator, the bound state particle, is on-shell. In three or more dimensions, all 

singularities which do not correspond to bound states appear as branch points, but 

in 1 + 1 dimensions they are poles. These poles correspond to more complicated 

diagrams composed of entirely on-shell particles (known as Landau diagrams). An 
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example of such a diagram, which would produce a double pole in the relevant S

matrix element, is shown in figure 2.11. For a diagram with P propagators and L 

Figure 2.11: Example of a Landau diagram 

loops, the corresponding pole has order p = P- 2L. This, however, is not yet the 

whole story as not every simple pole corresponds to a bound state, so one needs 

to find a way to reduce the order of a second order diagram to explain such simple 

poles. An obvious way that this can occur is if one of the 'internal' S-matrix elements 

has a zero at the necessary rapidity. Alternatively, if more than one diagram can be 

drawn, for fixed external lines, then these diagrams must be added together with 

appropriate relative weights. If cancellation occurs between the different diagrams 

then the overall order of the pole is lower than would be expected from the individual 

diagrams. 

To illustrate how one can build an S-matrix the example of the Ising model in 

a magnetic field will be discussed. Zamolodchikov [28] showed that, for this theory, 

local conserved charges exist with the spins 

s = 1, 7, 11, 13, 17, 19, (2.4.27) 

and so conjectured that this model is integrable. Zamolodchikov's c-theorem [29] 

states that for a perturbed CFT there is a function of the coupling constants which 

decreases along the RG flow and is stationary only at fixed points. At these points it 

is equal to the central charge of the corresponding theory. Physically one can think 

of this as some kind of entropy function which measures the loss of information in 

the coarse-graining procedure of the renormalisation group. Since the central charge 

of the Ising model is c = 1/2 and there is no unitary CFT with c less than this, by 

this c-theorem the perturbed theory must be massive and so an S-matrix will exist. 

The search for the S-matrix begins by assuming the existence of a particle of 

mass m 1 , and for simplicity take the model to have diagonal scattering. Since the Z 2 

symmetry of the model is broken by the perturbation, a q} type interaction is not 
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ruled out so one can assume that the 3-point coupling Cll 1 =/= 0. The mass triangle 

is then an equilateral, with all the fusing angles equal to 27r /3. The conserved charge 

bootstrap equation is 

(2.4.28) 

This has a non-trivial solution whenever s has no common divisor with 6 

s = 1, 5, 7, 11, 13, 17, ... (2.4.29) 

This is close to the spin 'fingerprint' of the model, however there are still too many 

spins so Zamolodchikov introduced a second particle with mass m2 and nonzero 

coupling Cll2 and C 122 , so A 2 can be interpreted as the 'bound state' A1A1 and vice 

versa. Let y1 = exp(iU}1 ) and y2 = exp(iU[2 ) then the conserved charge bootstap 

equations are 

qis) + q~s)yf + qis)Y~s = 0 

q~s) + qis)Y~ + q~s)Y~s = O. 

Eliminating qis) and q~s) from the above gives 

(2.4.30) 

(2.4.31) 

(2.4.32) 

This is satisfied by y1 = exp(47ri/5) and y2 = exp(37ri/5), for any odds which is not 

a multiple of 5, which corresponds to the following set of fusing angles 

and the mass ratio 

Ul2 = U~1 = 4n-j5 

u~l = u;2 = 37f /5 

u;l = 21r /5 

u~2 = 47f /5 

(2.4.33) 

(2.4.34) 

(2.4.35) 

By introducing this second particle the unwanted spins are eliminated and attention 

can now be turned to the S-matrix. This will be built from the blocks 

· h(() + inx) 

(x)(e) = sm 2 60 
· h(() inx) sm 2- 60 

(2.4.36) 

which are unitary, and when combined with the blocks (30 - x), also satisfy the 

crossing symmetry property. The choice of 60 here is to ensure that the x is always 

an integer. Each block has a single physical-strip pole at iJrx/30 and from the fusing 
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angles Uf1 and U[1 above the positions of the two forward channel poles are known. 

Therefore, incorporating these and their crossed channel partners the S-matrix ele

ment 5 11 must contain the blocks (10)(12)(18)(20). However, the bootstrap equation 

for the ¢3 interaction 11 ----> 1 requires that 5 11 (()- iJr/3)Sn(() + iJr/3) = 5 11 (()). 

For this to be satisfied, an extra factor - (2) (28) must be included. These are 

the forward and crossed channel poles corresponding to another particle with mass 

m3 = 2m1 cos(Jr/30). This procedure can be repeated for the 11 ----> 2 and 11 ----> 3 

fusings, introducing new particles (and more bootstrap constraints) each time a single 

pole, with positive residue, and its crossed channel partner are needed to satisfy the 

constraints. This system closes on 8 particle types, each with a different mass, mi, 

which together form the Perron-Frobenius eigenvector of the Cartan matrix of the 

Lie algebra E8 . 

2.5 Thermodynamic Bethe Ansatz 

The S matrices described above are conjectured to be theIR limit of a perturbed CFT. 

However, weight can be added to these conjectures by verifying that the UV limit of 

the perturbations are indeed the proposed CFTs. One can do this by implementing 

a technique known as the Thermodynamic Bethe Ansatz (TBA) [30]. 

Begin by considering a relativistic quantum field theory defined on a torus with 

the two periods, L and R, as shown in figure 2.12. The aim will be to take the limit 

R ----> oo to recover an infinitely long cylinder of circumference L. 

Figure 2.12: The two periods of a torus 

There are two ways to set up the Hamiltonian description on a torus. On one 

hand states can be chosen to lie on the circle L, with time in the R direction, a.s 

shown on the right of figure 2.12. These states are evolved by the Hamiltonian HL 

and are quantised with momenta 27fn/ L, n E Z. Taking the limit R ----> oo, the 

partition function, Z(R,L) = Tr(e-RHL), will be dominated by the ground state of 
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HL with energy Eo(L): 

Z(R, L) rv e-REo(L)_ (2.5.1) 

Alternatively, one could take the states to lie along R, evolving in the time-like 

direction Lunder the Hamiltonian HR. The states are now quantised with momenta 

2nn/R and the partition function is Z(R, L) = Tr(e-LHR). Recall from section 2.1 

that the free energy of the system can be written in terms of the partition function 

as F = - T ln Z, where the temperature T now includes the Boltzmann constant. 

Here, the system is considered as a 1-dimensional system at a temperature T = 1/ L. 

When the system size is large (so as R ~ oo), the free energy behaves as 

F(L) = Rf(L) + O(R- 1
) (2.5.2) 

where f(L) is known as the bulk free energy per unit volume 

f(L) = lim F(L) 
R~oo R 

(2.5.3) 

(see, for example, [31] for more details). The partition function, in the limit R ~ oo 

therefore behaves as 

ln Z(R, L) "'-RLJ(L). (2.5.4) 

Equating these two descriptions gives the relation 

E0 (L) = Lf(L). (2.5.5) 

The Hilbert space 1-lR, is expected to be given by scattering states in the R ~ oo 

limit, so one has some control over 1-{R which allows a quantisation condition to be 

written down and the limit of Z to be found. The aim is then to evaluate the free 

energy using saddle point techniques, i.e. minimising the free energy subject to the 

constraint imposed by the quantisation condition. The ground state energy can then 

be read off from the result using the relation (2.5.5). 

For simplicity, the TBA equations for a purely elastic scattering theory with N 

identical particles, each with mass M, with two-particle scattering amplitude S (B) 

will be derived. Consider a region of configuration space where the N particles are 

all well separated, i.e. the distance between adjacent particles is much larger than 

the correlation length 1/ M. The off-mass-shell effects can then be neglected and 

the particles treated as if they are free, with on-shell energy and momenta E1 = 
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Nfcosh(OJ) and PJ = .N/sinh(Oj)· This is valid provided R >>11M. In this region 

the N-particle state can be described by a Bethe wave function 'lj;(x 1 , ... , XN) = 

A(Q) exp(i LjP]Xj) where A(Q) is a function dependent on the configuration of the 

particles whose exact form is not important here. 

If two particles with initial positions Xj < < xH1 approach one another, interact 

and move apart with their positions reversed to the point where xJ+ 1 << Xj, the 

situation will again be such that the state can be described by a Bethe wave function 

as above. However, as a result of this interaction, the original wave function must 

be multiplied by the scattering amplitude S( ej - ej+l). The particle Xj can be sent 

around the torus, in the direction R, with the wave function picking up an S-matrix 

contribution each time Xj encounters another particle. Of course, when the particle 

returns to its original position, the wave function must equal the original. This 

periodicity imposes a quantisation condition on the momentum pj, j = 1, ... , N: 

eipjR II S(ej- ei) = 1. 
i#j 

Taking the logarithm of this leads to a set of conditions on the rapidities (:}j 

.N/Rsinh(Oj)- i LlnS(ej- ei) = 2nnj 
i#j 

with N integer numbers n1. 

(2.5.6) 

(2.5.7) 

This is quite a complicated system of transcendental equations but they become 

more tractable in the thermodynamic limit R -----> oo. The limit N -----> oo must also 

be taken, where N is the number of particles, so the density N I R remains finite. 

In this limit the spectrum of rapidities condenses as the distance between adjacent 

rapidities e1 - OH 1 rv 11 NI R so it becomes sensible to introduce a continuous density 

of particles, p1
• ( 0), which is defined as 

(2.5.8) 

where d is the number of particles with rapidity between e and e + .6.0. This is 

independent of the choice of interval .6._(:}, provided 1 I NI R < < .6.(:} < < 1. The sum in 

(2.5. 7) can now be replaced with an integral 

(2.5.9) 
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This equation has solutions, (), for all integer n, not just the integers n1 corresponding 

to an actual state. The rapidities () corresponding to n =1- n1 are known as holes, and 

the e1 roots. The above equation can be differentiated to give an equation relating 

the root density pr ( ()) to the level density p( ()) (density of roots plus holes): 

lvf Rcosh(()) + 21r J tp({)- ()')pr(()') d()' = 27rp(()) (2.5.10) 

where tp((}) is related to the S matrix via tp((}) = - 2~J0 lnS(e). 

If the theory consists of particles of 'fermionic' type then each state can only 

be occupied by one particle so the maximum number of rapidities in the interval 

( (), () + .6.()) is D = p( ()) .6,(). The actual number of roots in this interval is d, written 

in terms of the density pr ( ()) above. The densities p and pr are insensitive to the 

exact configuration of roots so the number of different quantum states corresponding 

to each pair p and pr is 

N( r) D! 
p,p = d!(D- d)! (2.5.11) 

In the thermodynamic limit, the logarithm of this quantity gives the contribution of 

the rapidity interval .6,() to the entropy S. By replacing the factorials above, using 

Stirling's formula lnr(z) "'zlnz- z + ... ,the entropy can be written as 

Now the partition function, in the limit R-----+ oo becomes 

Z(R, L) Tr{p,pr}N(p, pr)e-LHR 

TT{p,pr}e-LHR+S(p,pr) 

and total energy of the system, in terms of the density pr is 

(2.5.12) 

(2.5.13) 

(2.5.14) 

Since ln Z(R, L) "' - RLJ(p, pr) as R-----+ oo, comparing this to (2.5.13), one can write 

the free energy as 

-RLJ(p, pr) = j [-Jvf Lcosh(())pr(e) + p(()) lnp(())- pr(e) lnpr(e) 
(2.5.15) 

-(p(())- pr(())) ln(p(())- pr(e))] d(). 



2.5. Thermodynamic Bethe Ansatz 48 

The thermal equilibrium configuration can be obtained by minimising the free energy 

per unit length, f, with respect top and pr, i.e. set 6(2.5.15)/6pr(O) = 0 where 

6(2.5.15) = 8(2.5.15) + J 6p(O') 8(2.5.15) dO' 
6pr(O) 3pr(O) 6pr(O) 3p(0') . 

(2.5.16) 

The constraint (2.5.10) allows p to be treated as a functional of pr and from this it 

is clear that 

(2.5.17) 

and it is also easy to show that 

(2.5.18) 

and 

6 
6

pr(O') ((p(O)- pr(O)) ln(p(O)- pr(O))) = 
(2.5.19) 

- (1 + ln(p(O)- pr(O)) 6(0- 0'). 

The derivatives of (2.5.15) with respect to pr and p depend on these densities only 

through the ratio pr / p and since p(O) > pr(O) it is useful to set 

(2.5.20) 

where c:( 0) is a real function known as the pseudoenergy. In terms of this, the deriva

tives of (2.5.15) are 

( 
pr(O) ) 

- M L cosh(O) - ln p(O) _ pr(O) 

-N!Lcosh(O) + c:(O) (2.5.21) 

and 

8(2.5.15) = ln ( p(O) ) = ln (1 + e-£(0)) . 

3p(O) p(O)- pr(O) 
(2.5.22) 

So setting 6(2.5.15)/6pr(O) = 0 leads to a nonlinear integral equation known as the 

TBA equation: 

c:(O) = Nf Lcosh(O)- J cp(O- 0') ln(1 + e-£(O)) dO'. (2.5.23) 

This TBA equation can now be used to simplify the expression of the free energy 

in (2.5.15). Denote the integrand in (2.5.15) by I and writing this in terms of the 

pseudoenergy, c:(O), gives 

(2.5.24) 
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The constraint (2.5.10) can be used to replace p(O) here, leaving 

1 
I=- ]\If L cosh(O)pr(e) + -M Rcosh(O) ln(1 + e-f(O)) 

2n 

+ J cp(O- 0')pr(0') dO' ln(1 + e-E(O)) + pr(0)E(0). 

This can be simplified using the TBA equation (2.5.23) to give 

1 
I= 

2
7r !vi Rcosh(O) ln(1 + e-E(O)), 

so the extremal free energy per unit length is then 

f(L) = --1
- j NI cosh( e) ln(1 + e-E(O)) de. 

2nL 
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(2.5.25) 

(2.5.26) 

(2.5.27) 

Recall that the free energy is related to the ground state energy through E0 ( L) = 

Lf(L) and so 

E0(L) = -~ j 111 cosh( e) ln(1 + e-E(O)) de. 
2n 

(2.5.28) 

The regularisation implicit in the TBA derivation sets the bulk free energy, ££1112
, 

to zero so E0 ( L) given above is actually the Casimir energy. Comparing this to the 

Casimir energy of a CFT, E0 = -ncj6L, one can define the effective central charge, 

or ground state scaling function, as 

3l J Cetr(l) = n
2 

de cosh(O) ln(1 + e-E(O)). (2.5.29) 

This is dependent on the dimensionless parameter l = 111 L. This will vanish as l ---> oo 

which corresponds to the IR limit of the perturbed theory. The UV limit, when the 

CFT is recovered, corresponds to l ---> 0. In this case the scaling function is related 

to the central charge of the CFT: 

lim Cetr(l) = C- ~o. 
z~o 

(2.5.30) 

Here ~0 is the lowest scaling dimension of the CFT and since ~0 = 0 for unitary 

theories, Cetr(O) = c for those cases. This effective central charge provides a useful tool 

to check the validity of conjectured S-matrices for perturbed conformal field theories. 

This description was extended to cover the diagonal purely elastic scattering the

ories associated to the ADE type Lie algebras in [32][33]. The number of particles 

in these theories corresponds to the rank r of the algebra. The TBA system then 

consists of r pseudoenergies, each associated with a particle of mass rna, which satisfy 

Ea = maLcosh(O)- t J dO' </Jab(O- 0') ln(1 + e-Eb(O')) 

b=l 

(2.5.31) 
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where rPab(()) is related to the scattering amplitude Sab(()) 

i d 
rPab(()) = -

2
7!" d()Sab(()) · 

The Casimir energy can be written in terms of these pseudoenergies as 

1 r J E(L) = --L ma d() cosh(()) ln(1 + e-E(O)). 
27r 

a=l 
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(2.5.32) 

(2.5.33) 

Zamolodchikov [34] found the following universal form for these TBA equations in 

terms of the incidence matrix A~;] of the associated Lie algebra: 

Ea(()) =maL cosh(())-~ t J d()' A~;J'Ph(()- ()') ( mbLcosh(()') -ln(l + eEb(O'))) 

b=l 

(2.5.34) 

where the universal kernel, 'Ph, now depends only on the Coxeter number, h, of the 

Lie algebra 

(()) = h 
'Ph 2 cosh( ~h())" (2.5.35) 

He then remarked that these TBA equations encode one particular solution of a 

system of functional equations, known as the Y -system: 

r 

Ya(() + i7rjh)Ya(()- i1rjh) = rr(l + Yl,(()))A~<;J (2.5.36) 
b=l 

where Ya(()) = exp(ca(())). By successive substitutions of (2.5.36) into itself, it can be 

shown (case by case) that these Y -functions are periodic 

(2.5.37) 

There are also various proofs for this conjecture [35, 36, 37, 38, 39, 40]. This ob

servation has important consequences as it implies that the Y functions admit the 

Laurent expansions 
00 

(2.5.38) 
k=-oo 

and, as L ----t 0, the functions ln(l + e-Ea(O)) acquire the form of a plateau of approx

imately constant height in the central region -ln(1/ Nf L) < < () < < ln(l/.M L ). It 

then follows that the function L(E(L)-EL.A12(.>,))/27r = -Ceff(l)/12 can be expanded 

as a perturbative series in L 4h/(h+2) [34]. 

These TBA equations correspond to perturbations resulting in massive quantum 

field theories. However, some perturbations of CFTs lead to massless theories in the 
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IR limit, which are necessarily RG fixed points. These RG flows therefore interpolate 

between two conformal field theories. The ¢13 flows between the Virasoro minimal 

models are examples of this [29]. In these cases, the derivation of the TBA equa

tions is not so straightforward so Al. Zamolodchikov [41 ][42][43] instead developed a 

strategy of making an educated guess of the TBA equations and then testing them 

by checking that they correctly reproduced UV data, such as the central charge of 

the UV CFT and the dimension of the perturbing operator. Perhaps more inter

estingly, Al. Zamolodchikov [44] also proposed a simple diagonal scattering theory, 

known as the 'staircase model', from which the TBA equations follow in the standard 

way, shown here. Numerical investigations of the solutions to these equations show 

the vacuum energy, which is proportional to the effective central charge, following a 

staircase type pattern which suggests there is an underlying theory whose RG flow 

passes by a sequence of c < 1, i.e. Virasoro minimal model, fixed points. This was 

extended to cover the l¥9 minimal models in [45][ 46][ 4 7], however, a.s this thesis is 

concerned with perturbations resulting in massive scattering theories, no more will 

be said about these models here. 

2.6 'ODE/1M' Correspondence 

This section introduces a curious and useful link between functional relations of inte

grable models and spectral problems of ODEs, first found by Dorey and Tateo in [48]. 

These functional relations can be derived directly in terms of a CFT [49], but as only 

the final relations themselves will be of use later, a discussion of this derivation would 

deviate unnecessarily from the main point of the thesis. Instead, it will be shown how 

these relations arise quite naturally when statistical lattice models are solved using 

a particular method. The discussion presented here follows that found in the recent 

review [50]. 

2.6.1 Functional relations in Integrable Models 

The specific lattice model used here is the six-vertex model. This is a simple gener

alisation of the Ising model, first solved by Lieb [51 J and Sutherland [52]. Also see 

Baxter's book [53]. It can be defined on an N x M lattice with periodic boundary 
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conditions in both directions. On each link of the lattice a spin 1 or 2 is placed, de

picted here by a right or left arrow, on the horizontal links, and an up or down arrow 

on the vertical links. This is often referred to as an 'ice-type' model as each vertex 

can be taken to represent an oxygen atom with each link being the bond between 

adjacent atoms. The Hydrogen ion, sitting on each bond, will lie closer to one of the 

ends, according to the direction of the arrow. The 'ice-rule' states that each oxygen 

atom should have two Hydrogen ions close to it and two far away, which translates 

to the condition that the flux of arrows through a vertex must be preserved. There 

are therefore six options for the spins around each vertex, hence the name 'six-vertex 

model'. 

For real ice, each possibility is equally likely, but as a generalisation of this one 

can allow for different probabilities. The local Boltzmann weights, which assign a 

probability to each configuration, are defined here to be: 

l¥[-i-] 
l¥ [-1-] 
w [- i ~] 

and the partition function is 

Ml[~l~]=a 

w[~i~] =b 

w[~l-]=c 

Z=2:ITvv[·>J 
{a} sites 

(2.6.1) 

(2.6.2) 

(2.6.3) 

(2.6.4) 

where { o-} = { ~, -}. In the thermodynamic limit ( N, M - oo), the overall nor

malisation of a, b and c factors out trivially from all quantities so it is convenient 

to reparametrise the two remaining degrees of freedom using the variables v (the 

spectral parameter) and 7] (the anisotropy) 

a(v,7]) 

b(v, 77) 

c(v,7J) 

sin(7J + iv) 

sin(77-iv) 

sin(27J) . 

(2.6.5) 

(2.6.6) 

(2.6.7) 

It is usual to keep the anisotropy fixed in calculations, as different values of 7] will turn 

out to correspond to different models. The spectral parameter, on the other hand, 

can be varied as it is not a physical parameter, a fact that will become apparent 
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later. Introducing the multi indices a= (a1 , a 2 , ... , aN) and a'= (a~, a;, ... , a~), 

the transfer matrix can be written as 

(2.6.8) 

Since the boundary condition is also periodic in the vertical direction the partition 

function has the simple form 

(2.6.9) 

Quantities of interest are given by the eigenvalues of the transfer matrix. For example, 

if T has eigenvalues t 0 > t 1 > ... then the free energy, in the limit M -----+ 0 is 

1 
F = -- ln Z -----+ - ln t0 . 

A1 
(2.6.10) 

One therefore needs to find the eigenvalues t 0 , t 1 , .... This can be done using the 

Bethe ansatz, which consists of two steps: first a guess is made for an eigenvector of 

T, depending on a finite number, n, of parameters v1 , v2 , ... , Vn, known as the 'roots'. 

This guess is then found to work, only if the set of roots, {vi}, solve a set of coupled 

equations, known as the 'Bethe ansatz equations'. An elegant formulation of these 

equations is given by the algebraic Bethe ansatz, details of which can be found, for 

example, in appendix A of [50]. 

The standard form of the 'Bethe ansatz equations' (BAE) for the roots {v1 , ... , vn} 

are 

(- )n rrn sinh(2i7]- Vk + Vj) = _aN (vk, 'lJ) k = 1 
. sinh(2i7]- v1· + vk) bN(vk, T/) ' 

1
' · · · 'n · 

J=l 

(2.6.11) 

There is no unique solution to the BAE, but rather a discrete set of solutions, match-

ing the fact that T has many eigenvalues. For each solution {vJ the eigenvector I'll) 

ofT has eigenvalue 

( ) 
N( ) rrn a(vj- V- i'l], 7J) bN( ) rrn a(v- Vj- i'l], 7J) 

t v = a v, 17 + v + 17 . 
j=l b(vj - v- i1], 77) j=l b(v- Vj - i'l], 77) 

(2.6.12) 

The algebraic Bethe ansatz also provides a simple proof that the transfer matrices, 

at different values of the spectral parameter v, commute: 

[T(v), T(v')] = 0. (2.6.13) 

From this it is clear that the eigenvectors of T cannot depend on v, therefore it is 

not a physical variable, as claimed earlier. 
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Periodic boundary conditions, as imposed here, are not the only boundary condi

tions for which this model is integrable. In fact, integrability is preserved when these 

periodic boundary conditions are modified by introducing a 'twist' (see for example, 

[54][55][56]). This amounts to adding a phase factor to the Boltzmann weights on 

one column of the lattice, say the Nth, so 

W [!3N :: ~] (v) ~ e-i¢W [!3N :: ~] (v) 

W [f}N :: <---] (v) ~ ei¢HI [f)N :: .-] (v). 

(2.6.14) 

(2.6.15) 

The transfer matrix is then defined as in (2.6.8) and the algebraic Bethe ansatz goes 

through almost unchanged. The result is that the generalised transfer matrix T(v, ¢) 

has eigenvalues 

t(v, ¢) = e-i¢aN (v, TJ) IIn a(vj- v- ~TJ, TJ) + ei¢bN (v + TJ) rrn a(v- Vj- ~TJ, TJ) 
j=l b(vj- V- ZTJ, TJ) j=l b(v- Vj- ZTJ, TJ) 

(2.6.16) 

where the set of roots { v1 , ... , v11 } satisfy the modified Bethe ansatz equations 

(
- )nfln sinh(2iTJ-Vk+vj) __ _ 2i¢aN(VkJTJ) ~-

1 ( )- e N( ),k-1, ... ,n. 
j=l sinh 2iTJ- v1 + vk b vk, TJ 

(2.6.17) 

An alternative approach to this is provided by Baxter [57]: since the transfer 

matrices T(v) commute for different values of the spectral parameter v, the T(v) can 

be simultaneously diagonalised and the eigenvectors W will not depend on v. One can 

therefore focus on the individual eigenvalues t0 (v), t 1(v) ... as functions of v. Given 

the form of the Boltzmann weights in (2.6.5-2.6. 7) and the claim that the eigenvectors 

are v-independent, these functions t(v) are entire and in-periodic. A matrix Q(v) 

can now be defined, which commutes with itself and with T: 

[Q(v), Q(v')] = [Q(v), T(v')] = 0 (2.6.18) 

and satisfies the TQ relation 

(2.6.19) 

The eigenvalues of Q are also functions of v, denoted q(v), which are also entire 

and, at least for the ground state, in-periodic. They satisfy the eigenvaJue relation, 

corresponding to (2.6.19) 

(2.6.20) 
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The BAE equations can then be extracted from (2.6.20) as follows: suppose that the 

zeros of q(v) are at v1 , ... , Vn. Given the periodicity of q(v), it can be written, up to 

an overall normalisation, as 
n 

q(v) =IT sinh(v- v1). (2.6.21) 
/=1 

Now putting v = vi in (2.6.20) gives 

(2.6.22) 

and using the equation for q(v), (2.6.21), this can be rearranged to 

(
- )n rrn sinh(2i'1]- Vi+ Vz) __ _ 2iq;aN (vi, 'lJ) . _ 

1 ( ) - e N( ) , z- 1, ... , n. 
sinh 2iry - Vf + vi b vi, '1] 

1=1 

(2.6.23) 

This is the BAE from (2.6.17), and t(v), given by (2.6.20), then matches the t(v) 

found by the direct calculation. Baxter in fact established this TQ relation (2.6.19) 

by an independent argument and then generalised it to the previously unsolved eight

vertex model [57][58]. See his book [53] for more details. 

The continuum limit of the six vertex model is a. unitary CFT with central charge 

c = 1. The TQ relations, described above, therefore encode information about this 

CFT when this limit is taken. Alternatively, these functional relations can also be 

constructed directly in terms of a. CFT, as proposed by Ba.zha.nov, Lukya.nov and 

Zamolodchikov in [49] and developed further in [59] and [60] . No more will be said 

about this approach here as it is not directly used in this thesis. 

2.6.2 Ordinary differential equations 

In order to make the link between the integrable model above and the theory of 

ordinary differential equations, the aim is to find a. functional relation in the ODE 

theory which can be directly compared to the TQ relation (2.6.19) above. This link 

was first found by Dorey and Ta.teo in [48] where the ODE 

d2 
- dx

2
1jJ(x)- (ix) 2M1jJ(x) = E1jJ(x) (2.6.24) 

was considered, with x a. complex variable and M > 1. For a. discussion of eigenvalue 

problems on a. complex contour see, for example, [61][62][63]. The WKB approxima

tion to the solutions 1/J gives the leading asymptotic 

(2.6.25) 
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as lxl -----> oo, with P(x) = -(ix)2
M- E. Since M can take non-integer values, there 

needs to be a branch cut in the plane which is taken here along the positive imaginary 

axis. It is then natural to define general rays in the complex plane by x = -ipei0 

with p real. The WKB formula gives two leading order behaviours, as expected for a 

second order equation: 

1/J ""' p-1/4 exp (± 1 eiO(l+M) pl+M) 
± A1 + 1 

(2.6.26) 

Note that here P(x) has been shifted byE, so that P(x) = -(ix) 2M, but this doesn't 

change the leading asymptotic for M > 1 so (2.6.26) is still valid. For most values 

of(), one of these solutions is exponentially growing, while the other is exponentially 

decaying. The two solutions swap roles when Re(eiO(l+M)) = 0, and at this crossover 

point, neither solution dominates but instead both oscillate. This occurs when () is 

7r 37r 57r 
() = ± 2111 + 2' ± 2lvf + 2' ± 2111 + 2' ... (2.6.27) 

These values of() will be called 'anti-Stokes lines' here, but note they are sometimes 

alternatively called 'Stokes lines'. The wedges between the lines are known as 'Stokes 

sectors' and one solution, the subdominant, will exponentially decay as lxl ----> oo 

within each sector. This is a unique solution, up to a multiplicative constant, whereas 

the dominant solutions, those which exponentially grow as lxl -----> oo, are not. Taking 

the subdominant solutions in any two sectors will lead to an eigenvalue problem 

with a discrete spectra, but the choice of sectors is important as different pairs give 

different eigenvalue problems. 

It is convenient to eliminate the factors of i in the ODE above by the variable 

changes 

so the 0 DE becomes 

x-----> xji, E-----> -E 

(
- d2 + x2M - E) 1/J ( x) = 0 . 

dx2 

(2.6.28) 

(2.6.29) 

This variable change also moves the branch cut to the negative real axis. With this 

shift, the anti-Stokes lines become 

7r 37r 
arg(x) =±2M+ 2' ±2Jvf + 2' · · · (2.6.30) 

with Stokes sectors defined as 

I 
27rk I 7r sk := arg(x)- 111 < Jvf . 

2 1 +2 2 +2 
(2.6.31) 
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The ODE (2.6.29) has a so called 'basic' solution y(x, E) which is an entire func

tion on the cut plane. In the limit lxl --+ oo, with iarg(x)i < 2 A~t+- 2 , it has the 

asymptotic 

y rv -x-2 exp - x" +- 1 1 At [ 1 '!] 
y'2Z M+1 

(2.6.32) 

which matches the WKB approximation in the Stokes sectors S_ 1 U S0 u S1 . Note 

that this is subdominant in S0 and dominant in S_ 1 and S1. Further solutions to the 

ODE can be generated as follows: consider the function fj(x) = y(ax, E) which solves 

the differential equation 

(- d~2 + a2M+-2x2M - a2 E) fj(x, E) = 0. (2.6.33) 

If a2A1+2 = 1 
' 

fj(x, a- 2 E) is a. solution to the original ODE (2.6.29). By setting 

w = e27ri/( 2M+- 2l, one can define a whole set of solutions to (2.6.29) 

(2.6.34) 

By inspecting the asymptotics of Yk it follows that Yk is subdomina.nt in Sk and 

dominant in Sk±1· Furthermore, Yk and Yk+- 1 are linearly independent and so form a 

basis of solutions so, for example, y_ 1 can be expanded in the {y0 , yi} basis as 

Y-1 (x, E) = C(E)yo(x, E)+ C(E)y1 (x, E). (2.6.35) 

This is an example of a Stokes relation and the coefficients, C and C, are the 'Stokes 

multipliers'. These multipliers can be expressed in terms of Wronskians, where the 

Wronskian of two functions, f(x) and g(x) is 

W[f, g] := fg'- f'g · (2.6.36) 

By considering the derivative of W, with respect to x, it is easy to show that the 

Wronskian of two solutions to a. second order ODE, with no single derivative term, is 

independent of x and is zero if and only if the solutions are linearly dependent. Since 

y0 and y 1 are linearly independent, expressions can be found for C(E) and C(E) in 

terms of Wronskians. First, to simplify notation, let W[y1, Yk] - W1,k and notice, 

using (2.6.34), that 

(2.6.37) 

By considering the asymptotic expressions for y, it also follows that 

Wo1 = 1 , (2.6.38) 
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(for Jvf > 1). Now, taking Wronskians of (2.6.35), first with y1 and then with y0 gives 

w-1,1(E) 
W. (E) = W-1,1 (E) 

0,1 
(2.6.39) C(E) 

C(E) w-1,o(E) lVo,1(w2 E) 
- =- = -1 

Wo,1(E) Wo,1(E) · 
(2.6.40) 

With these simplifications, the Stokes relation (2.6.35) can be rewritten as 

C(E)yo(x, E)= Y-1(x, E)+ Y1(x, E) (2.6.41) 

which, in terms of the original 'basic' solution y(x, E), is 

(2.6.42) 

To compare this to the TQ relation (2.6.19) found on the integrable model side, 

x must be set to zero. Note, however, that if the derivative of (2.6.42) with respect 

to x is taken first, this will swap the phase factors w±112
. Defining 

D_(E) := y(O, E), D+(E) := y'(O, E) (2.6.43) 

and setting x = 0 in the Stokes relation (2.6.42) implies 

(2.6.44) 

which matches the TQ relation (2.6.19), provided the twist parameter is set to ¢ = 

211
;+2 [48]. This link between the integrable model and an ODE also exists for other 

values of the twist parameter, but for this to work an angular momentum term 

l(l + 1)/x2 must be included in the ODE [64], which becomes 

(-d:2- (ix) 2
M + l(l; 1)) w(x) = Ew(x). (2.6.45) 

The same method, as used above, can be applied to this case [65]. The only subtlety 

arises in the final step when previously x is set to zero. Here, because of the angular 

momentum term, this cannot be done directly but instead one must consider the 

asymptotics as x ----> 0. The final Stokes relation, to be compared to the TQ relation, 

IS 

C(E, l)D(E, l) = w-(l+1/ 2l D(w- 2 E, l) + w(1+ 1/ 2l D(w 2 E, l) (2.6.46) 

where D(E, l) := W[y, '!j;](E, l), the Wronskian of the 'basic' solution, which is the 

same as in the simple case (2.6.32), and a solution defined via its asymptotics as 

x---->0 

(2.6.47) 



2.6. 'ODE/1M' Correspondence 59 

This asymptotic fixes 1/J uniquely, provided Re l > -3/2. A second solution can 

be found by sending l ---t -1 - l. The differential equation, but not the boundary 

condition, is invariant under this transformation so 1/J(x, E, -1 -l) is also a solution 

of (2.6.45). Near the origin, this behaves as x-1, so for generic values of l, the 

pair of solutions 1/J(x, E, l) and 1/J(x, E, -1- l) are linearly independent. Defining 

D_(E) := D(E, l) and D+(E) := D(E, -1- l), then taking land -1 -lin (2.6.46) 

gives 

(2.6.48) 

Comparing this to the TQ relation (2.6.19), it is clear that the twist parameter is 

related to the angular momentum l and the degree of the potential of ODE via 

(2l + 1)7T 
¢ = 2NI + 2 

and, in fact, the anisotropy parameter rJ is also related to M: 

7T Nf 
rJ= 21\1+1" 

(2.6.49) 

(2.6.50) 

This 'ODE/IM correspondence' has proved useful, mainly because the properties 

of ODEs and their solutions are somewhat better understood than those of the T and 

Q functions in integrable quantum field theories. Certain properties, conjectured to 

hold for these T and Q functions have been proven using the correspondence [64]. 

On the other hand, ideas from the theory of integrable models have been employed 

to gain insights into the spectral properties of certain ODEs. One example of this, 

which will be discussed further in Chapter 5, is the use of this correspondence to 

prove the reality of the spectrum, for certain land M, of the PT-symmetric quantum 

mechanical problem, with Schrodinger equation (2.6.45) [66]. 



Chapter 3 

Boundary Problems 

So far, perturbed conformal field theories have been examined on both an infinite 

plane and a torus. An obvious question which now springs to mind is how does this 

story change when more general boundary conditions are imposed on the theory? 

This chapter aims to answer this by first looking at the effect of the boundary on a 

CFT, in particular, which boundary conditions preserve conformal invariance. The 

perturbation of this theory, by both bulk and boundary operators, is then discussed 

which leads on to the introduction of Reflection factors, or boundary S-matrices. Fi

nally a method is proposed to link the reflection factors to specific conformal boundary 

conditions, using the TBA. This is analogous to the effective central charge Ceff which 

provides a link between the S-matrix and the central charge of the bulk theory. 

3.1 Boundary CFT 

In a series of papers [67][68][69][13], Cardy explored the consequence of restricting 

a CFT to the upper half plane with the real axis as the boundary. The discussion 

presented here follows [68], along with Cardy's review [70]. All conformal transfor

mations acting on the theory must preserve the boundary. This constrains the energy 

momentum tensor to satisfy T( z) = T( z) on the real axis. In Cartesian coordinates 

this becomes Txylx=O = 0, so physically it corresponds to the requirement that no 

energy or momentum must flow across the boundary. The effect of this constraint is 

to eliminate half of the conformal generators as the holomorphic and antiholomorphic 

sectors are no longer independent. 

60 
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Mapping the upper half plane into an infinite strip of width R by w B.ln z. 
7r ' 

there is no reason why the boundary conditions on either side of the strip must be 

the same, so they will be labelled as a and (3, as shown in figure 3.1. Transforming 

this strip, with two boundary conditions, back to the upper-half plane produces a 

discontinuity in the boundary condition at z = 0. The effect of this is equivalent 

to inserting a boundary operator ¢o:13 (0), known as a boundary condition changing 

operator, at the discontinuity. 

/ 
R 

/ 
z~ R lnz / / 

cJ>ap 1[ a / / p 
/ / 

a p / / 
/ / 

Figure 3.1: Mapping from the upper half plane into an infinite strip 

Suppose this strip is now made periodic, becoming a cylinder of length R and 

circumference L, with boundary conditions a and (3 at each end. If time is taken 

in the L direction, this corresponds to mapping the cylinder into a half-annulus in 

the upper-half plane by z ---> exp(7rz/ R), shown in figure 3.2. The Hilbert space 

R 

Q 
//a///B// 

Figure 3.2: L-channel decomposition 

decomposes into irreducible representations of one copy of the Virasoro algebra: 

(3.1.1) 

where the non-negative integers, n~13 , are the multiplicities. The boundary condition 

changing operator, mentioned above, is the highest weight state with weight ho:f3 

equal to the lowest value of h for which n~13 > 0. Acting on this state with other 

local operators then gives the other representations with non-zero n~13 . Following 

the method given in section 2.2.2, remembering that there is only one copy of the 



3.1. Boundary CFT 62 

Virasoro algebra here, it is easy to show that the Hamiltonian Ho:(3 is given by 

Hstrip = !!__ (L _ _5_) 
o:f3 R 0 24 . (3.1.2) 

It then follows that the cylinder partition function 

(3.1.3) 

can be decomposed into the Virasoro characters Xi(q) = q-c/24TriqLo (first introduced 

in (2.2.46)) as 

(3.1.4) 

where q = exp( -1r L I R). 

Taking time in the R direction corresponds to mapping the cylinder to an annulus 

on the full complex plane by z --+ exp(- 27fiz I L). This is shown in figure 3.3. The 

L C) 
R 

time 
:~ 

z ~ c -2niz/L 

/ 
/ 

Figure 3.3: R-channel decomposition 

/ 

@ / 

/ 

Hilbert space is that of the bulk theory on the plane, which carries a representation 

of two copies of the Virasoro algebra. The cylinder Hamiltonian is therefore given by 

Hcirc = 2; ( Lo + Lo - lc2) . (3.1.5) 

For the partition function, it is useful here to refer back to the lattice description. 

In section 2.1.3, the partition function of a statistical model on an n x rn lattice is 

written as 

(3.1.6) 
Ill , ... ,jlm 

where IJ.Li) is a state describing the spin configuration on the ith row and the transfer 

matrix T = exp( -aH) evolves each state over the 'time' of a lattice spacing a. With 

this in mind, by writing the boundary conditions a, f3 in terms of boundary states 
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Ia) and I,B) [68] and summing over only those states which satisfy the boundary 

conditions, the partitiori function becomes 

(3.1. 7) 

The condition T(z) = T(z), under the mapping z ~ wexp(-2niz/L), becomes 

(3.1.8) 
'4 

which corresponds to the following constraint on these boundary states: 

(Ln - L_n) Ia) = 0. (3.1.9) 

For diagonal CFTs (i.e. CFTs whose torus partition function can be written as 

Z = Li niXi(q)Xi(q)) the solution to this constraint is unique and is given by the 

Ishibashi states: 

in terms of the highest weight state li) with hi = hi, and conformal vacuum IO) with 

h = h = 0. There is one Ishibashi state for each bulk primary state and they can be 

normalised so that 

(3.1.11) 

where q = exp( -4n R/ L ). 

States corresponding to physical boundary conditions are not the Ishibashi states 

but are certain linear combinations of these, known as Cardy states: 

Ia) = L g~lj) ). (3.1.12) 
j 

The coefficients g~ can be assumed to be real as it is always possible to normalise the 

fields in such a way that this is true. In this notation (3.1. 7) becomes 

Zaf3(q) = L9~9bXJ(ij). 
j 

(3.1.13) 

Equating the two partition functions (3.1) and (3.1.13), and using the modular trans

formation property of the characters 

Xi(q) = 2:siJXJ(ii) 
j 

(3.1.14) 
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leads to the Cardy condition 

(3.1.15) 

For diagonal CFTs (and non-diagonal minimal models) there is a complete solution 

to this condition. First a boundary state, ID) must be found such that n~6 = 6fi, 
which from (3.1.15) must satisfy (gb) 2 = S01 . Since S01 > 0 this state can be defined 

as 

ID) = 2:)So1)
112 1J)) 

j 

with further boundary states given by 

(3.1.16) 

(3.1.17) 

Denoting the representation conjugate to l by r, then for the boundary conditions 

(kd): 
""" i _ 1 1 _ skjslj 
~ sijnjd - gk.gi - ~. 

i 0] 

(3.1.18) 

Comparing this to the Verlinde formula, which arises when a CFT is considered on 

a torus: 

"""s . Ni - skjslj 
~ t) kl- s 

i Oj 

(3.1.19) 

one can equate the multiplicities nki to the fusion algebra coefficients Nkz· Therefore, 

for diagonal models, there is a bijection between the allowed primary fields in the 

bulk CFT and the allowed conformally invariant boundary conditions. 

A quantity that is of particular interest in this thesis is Affleck and Ludwig's g

function, or 'ground state degeneracy'[3]. This appears when the cylinder partition 

function is considered in the limit that the length of the cylinder R -t oo. The log 

of the partition function, in this limit will have the form 

In Za,a '"" - RE~irc ( L) + constant (3.1.20) 

where E8irc(L) = FL = -1rcj6L and the constant is a boundary dependent term, 

defined a.s ln 9a9f3, with 9a the ground state degeneracy corresponding to the boundary 

state Ia). 
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Taking time along the cylinder, in the R direction, the partition function has 

leading order behaviour 

n 

(aiD) (DI/3)e-RE8i'c(Ll (3.1.21) 

where ID) is the bulk ground state. Taking logs of this gives 

ln Zaf3 rv - REgirc ( L) + ln 9a9f3 (3.1.22) 

with 9a = (aiD). Now (aiD) = 2::::1 g~( \JID), but since all primary states are orthogo

nal, ((jiD) =((DID). Expandingthelshibashistateas ((DID)= (DID)+(DIL~~1 ID)+ 

... and using the fact that LniD) = 0 for n > 0, the only non-zero term left in this 

expansion is the first. Therefore (aiD)= g~ and so it is clear from (3.1.12), (3.1.16) 

and (3.1.17) above that 

San 
9a = (Son)I/2" go = (Son) 112 (3.1.23) 

Affleck and Ludwig also proposed a g-theorem [3], later proven in [71], which is 

analogous to Zamolodchikov's c-theorem [29]. It states that the g-function decreases 

under renormalisation group flow from a less stable to a more stable critical point in 

the same bulk universality class. This means that if a CFT with boundary state Ia) 

is perturbed by a boundary perturbation only, while the bulk remains critical, then 

the resulting IR theory will be the same CFT with boundary l/3) where 9(3 < 9a· This 

no longer necessarily holds when a bulk perturbation is added. 

3.2 Perturbed Boundary CFT 

The perturbation of a CFT with a boundary was first considered by Ghoshal and 

Zamolodchikov in [72] and the discussion here will follow their work. First, consider 

a CFT in Euclidean space, with coordinates (x, y) and impose a conformal boundary 

condition at x = 0. This theory can be perturbed by both a relevant bulk operator, 

rp(x, y), and a relevant boundary operator, ¢(y) with the resulting action taken to be 

A= ABCFT + ,\ [~ dx 1: dy rp(x, y) + f-l 1: dy ¢(y). (3.2.1) 
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For a boundary CFT the condition Txylx=O = 0 must be satisfied, but for the per

turbed theory this constraint becomes 

- d 
Txyix=O = ( -i)(T- T)ix=O = dy O(y) (3.2.2) 

where O(y) is some local boundary field. Of course, in general, even if the bulk 

perturbed theory is integrable the boundary conditions could spoil this integrability. 

However, if the boundary conditions satisfy 

(3.2.3) 

for some s E { s }, 08 again being some local boundary field and Ts+l and 8 8 _ 1 being 

the local bulk fields described in section 2.3, then an integral of motion for each s 

can be found. 

There are two ways to introduce the Hamiltonian picture in this theory. The first 

is to take y to be the time direction so the boundary is a boundary in space and 

the Hilbert space 1-ls is associated to the half-line x E ( -oo, 0]. Alternatively, x can 

be taken to be the time direction, in which case the boundary is an initial condition 

which can be described by the boundary state IE) which will lie in the Hilbert space 

of the bulk theory. In this case the integrals of motion are the same as those for the 

bulk theory: Ps = f~oo(Ts+l + Gs_I)dy and Ps = f~(Ts+l + Ss_I)dy. Therefore, 

from (3.2.3), for the theory to be integrable the boundary states must satisfy 

(3.2.4) 

There is no boundary analogue of Zamolodchikov's counting argument to deter

mine the integrable perturbations; instead one must find some integrals of motion 

directly. For example, in [72], Ghoshal and Zamolodchikov conjectured that the Vi

rasoro minimal models, perturbed by the bulk and boundary operators 'P(l,3) and 

¢(1,3) respectively, are integrable by first setting A = 0, so perturbing at the bound

ary only, and finding solutions to (3.2.3) for s = 1, 3, 5, .... They then argued that by 

dimensional analysis, parallel to that used by Zamolodchikov in [21] and described in 

section 2.3, these results remain valid for A =/= 0. In general it is expected, although 

has never been proven, that adding a boundary perturbation to an integrable bulk 

PCFT will result in a.n integrable theory provided the boundary perturbing operator 

is the boundary operator corresponding to the bulk perturbing operator. Note that 
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as there is only one copy of the Virasoro algebra in the boundary theory, boundary 

operators have scaling dimension half that of the corresponding bulk operators. This 

expectation is certainly true in every case so far examined and if the boundary oper

ator did not match the bulk operator in this way the situation would, in some sense, 

be akin to perturbing a bulk CFT by a combination of two relevant operators which 

is also not usually expected to lead to an integrable theory. 

Perturbing by a bulk operator, with or without a boundary perturbation, will 

clearly alter the boundary conditions and in cases where this perturbation results 

in a massive theory with a particle description, it is necessary to understand how 

the particles interact with the boundary. The boundary analogue of the S-matrix 

elements, known as Reflection factors are therefore needed. 

3.3 Reflection factors 

In this section the S-matrix approach of section 2.4 is adapted to the semi-infinite 

plane. This problem was first treated in papers by Ghoshal and Zamolodchikov [72] 

and Fring and Koberle [73], but the discussion presented here follows that given in 

[72] and also [27]. 

Returning to ( 1 + 1) Minkowski space with time taken in the y direction, the 

asymptotic states, in parallel to the bulk case, can be considered as particle creation 

operators Aa;(Oi) acting on the ground state 10) 8 : 

(3.3.5) 

For an in state, the rapidities 01 , ... , On are all positive, whereas for an out state they 

are aU negative. The boundary can be thought of as an impenetrable particle, B 

sitting at x = 0 so formally, the ground state can be written as 

(3.3.6) 

This description makes the analogy with the S-matrix theory m the bulk quite 

straightforward. The asymptotic in and out states become 

(3.3.7) 

with the rapidities ordered as 01 > 02 > ... On > 0 and 0 < 01 < fh < ... On 

respectively. As in the bulk case, the existence of the higher spin integrals of motion 
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constrain the in and out momenta to be equal and allow no particle production. The 

n particle 8-matrix, which relates the in and out states via 

Aa1 ( OI)Aa2 ( 82) · · · Aan (On) IO) B 

= R~~~22 .... ba: (81, 82, ... , Bn)Ab1 ( -Ol)Ab2 ( -02) ... Abn ( -Bn)IO)B 
(3.3.8) 

can be expressed in terms of the fundamental 2-particle 8-matrix elements, s~~~~' 

and the one particle reflection factors R~, where ma = mb. These reflection factors, 

defined by the relations 

(3.3.9) 

are shown in figure 3.4. 

b 

Figure 3.4: The reflection factor R~ ( 0) 

The amplitudes R~ must satisfy properties, analogous to those for the bulk theory 

described earlier. The first of these is the boundary Yang-Baxter equation, which 

results from the factorisation property, just as in the bulk case: 

(3.3.10) 

This is shown in figure 3.5. The boundary unitarity condition is also a generalisation 

of the bulk case, coming from the requirement that the reflection factor is analytic 

and so (3.3.9) must make sense for negative rapidity. This leads to the constraint 

(3.3.11) 

The analogue of the bulk crossing symmetry is less obvious and in fact corresponds 

to a boundary crossing-unitarity condition found by Ghoshal and Zamolodchikov in 

[72]. First, it is necessary to take time in the x direction, i.e. consider the picture 

3.4 from the side. The space of states, 'H, is now that of the bulk theory with the 
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/ 

/ 
., 

., 

Figure 3.5: Boundary Yang-Baxter equation 

boundary condition, at x = 0, being an initial condition described by a boundary 

state IE). Since IE) E H it must be a superposition of the asymptotic states 

Now for a boundary state to be integrable it must satisfy 

and since QsiAa(O)) 

(3.3.12) is 
n 

L 2q~~) sinh(sei)· 
i=l 

(3.3.12) 

(3.3.13) 

(3.3.14) 

Therefore, any particle Aa can only enter the boundary state IE) in a pair Aa(O)Ab( -e) 

of equal mass particles with opposite rapidities. 

Ghoshal and Zamolodchikov [72] then argued that the relevant boundary state, 

written in terms of a 2-particle out state Aa( -O)Ab(O)IO) is 

(3.3.15) 

where Kab is related to the reflection factor via 

(3.3.16) 

This boundary state can also be expanded in terms of the in states Aa(O)Ab( -O)IO) 

as 

(3.3.17) 
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Since the in and out states are related by the 8-matrix, this puts a constraint, known 

as the boundary crossing-unitarity condition, on ]{ab(O): 

(3.3.18) 

This allows the boundary state (3.3.15) to be written as 

(3.3.19) 

The unitarity, Yang-Baxter and crossing constraints described so far allow the reflec

tion factors to be fixed up to R~ ( 0) -----+ R~ ( O)<I> 8 (B), where <I> 8 satisfies 

(3.3.20) 

which is exactly the bulk CDD ambiguity. 

Restricting to the case where the boundary scattering amplitudes are purely elas

tic, the unitarity condition (3.3.11) becomes 

(3.3.21) 

and crossing-unitarity (3.3.18), written in terms of the reflection factors, is 

(3.3.22) 

There are also bootstrap constraints, as in the bulk S-matrix theory, which occur 

when bound states appear in the spectrum. With the introduction of the boundary 

there are now two types of bound states and therefore two bootstrap conditions to 

consider. The first of these is the analogue of the bulk bootstrap associated with the 

usual bulk bound states: if a particle Ac is interpreted as the bound state of particles 

Aa and Ab, i.e. if the bulk three-point coupling cabc is nonzero, then this system 

could interact with the boundary before or after the bound state is formed. However, 

these two situations are indistinguishable, due to the factorisation condition, which 

leads to the bootstrap constraint: 

(3.3.23) 

shown in figure 3.6. If particle Ac is instead a bound state of Aa with itself then Ra 

is expected to have a bound state at () = i1r-j2- U~a/2 as shown in figure 3.7. The 
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c 

c 
a 

a 

b b 

Figure 3.6: The boundary bootstrap constraint 

a / 
/ 
/ 

c 
/ ..,___ gc iU~a / / 
/ 
/ 

a / 

Figure 3. 7: The boundary coupling of a bulk bound state 

corresponding residue is 

Ka(e) ~ !_ caa.cg: 
2 e- zUaa 

(3.3.24) 

where caac is the bulk three-point coupling and gc is the coupling of particle Ac with 

the boundary. 

It is also possible to find boundary bound states in the spectrum. These occur 

when an incoming particle binds to the boundary, thereby changing its state. The 

boundary fusing angle, u~a' is associated to a particle Aa, binding to the boundary 

and changing its state from Ia) to 1;3), as shown in figure 3.8. The reflection factor 

a 

Figure 3.8: Boundary bound state 
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R~ will have an associated pole at iu~a and around this pole it can be considered as 

. fJ ao: 
Ro: (O) ~ '!_ 9ao:9 fJ 

a 2() ·fJ - ZUo:a 
(3.3.25) 

in terms of the boundary couplings shown in figure 3.8. This also has an associated 

bootstrap condition, shown in figure 3.9, and given by 

I a) 

b 
/ Ia) 

a / 

Figure 3.9: The boundary bound state bootstrap constraint 

(3.3.26) 

The difference in energy of these two boundary states can be written in terms of the 

mass of particle a and the boundary fusing angle 

(3.3.27) 

These bootstrap constraints can be used to construct reflection factors, in much 

the same way as the corresponding bulk constraints were used for the 8-matrix. As

suming that all the boundary states can be formed from the vacuum state by binding 

a bulk particle to the boundary, once reflection factors for the vacuum boundary state 

are known for all bulk particles they can be examined for evidence pointing to fur

ther boundary states. Reflection factors can then be constructed for these boundary 

states using (3.3.26) which are then also searched. This is repeated until all poles are 

accounted for without the need to introduce any more boundary states. 

Some care must be taken here, just as in the bulk case, since not all poles will 

correspond to boundary bound states. For example, reflection factors will, in gen

eral, contain simple poles which do not depend on any boundary parameter, although 

one would expect boundary bound states to depend on the properties of the bound

ary. These poles must therefore be simple reflections off the boundary given by the 
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/ 
/ 

Figure 3.10: A boundary independent Coleman-Thun process 
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processes shown in diagram 3.7 and 3.10. The latter is a more complicated pro

cess which requires an appropriate bulk vertex. There are also two mechanisms by 

which boundary parameter dependent poles can exist, without the formation of new 

boundary bound states. The first of these is the boundary analogue of the 'u-channel' 

process in the bulk [7 4]: if a particle a, with rapidity e' binds to the boundary thereby 

exciting it to a state 1,8), then the reflection factor of the same particle on this new 

state, R~, will have a pole at the same rapidity e. This occurs as the boundary 

initially emits particle a, which returns to its original state, the new state then being 

recreated by the incoming particle a, as shown in figure 3.11. The second mecha-

a , I~> 

/ Ia) 
/ 
/ 

j I~> 

Figure 3.11: The 'u-channel' process 

nism is via Coleman-Thun type processes [7 4], as shown in figure 3.12, which exist 

provided there are suitable bulk and boundary vertices to make them close. Naively 

they are second order, but they can be reduced to first order if there is a zero in the 

reflection factor, or in the case of the RHS of figure 3.12, in the S-matrix element 

at the appropriate rapidity. A point to note is that as the boundary parameter is 

varied, poles can change from describing a boundary bound state, to being due to a 

Coleman-Thun process. This will become clear later as a pole analysis of the 'mixed' 

boundary condition of the three-state Potts model is worked through. 

The main problem here lies in constructing the reflection factors for the vacuum 
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Figure 3.12: Boundary dependent Coleman-Thun processes 
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boundary state since, for a given bulk S-matrix, there are infinitely-many distinct 

sets of reflection factors consistent with these constraints, because any solution can 

be multiplied by a solution of the bulk bootstrap, unitarity and crossing equations 

to yield another solution [75]. To identify a set of reflection factors as physically 

relevant some more information is needed. A common basis for the conjecturing 

of bulk scattering amplitudes is a 'minimality hypothesis', that in the absence of 

other requirements one should look for solutions of the constraints with the smallest 

possible number of poles and zeros. This will be used later to construct a set of 

reflection factors for the A, D, E related theories. 

Of course, one still needs some way to test these reflection factors, to see if they 

are physical and to match them with conformal boundary conditions in the UV limit. 

In the bulk case, the S-matrices were matched to specific perturbed conformal field 

theories using the TBA Cetr, so what is needed is a boundary analogue of this. An 

obvious candidate for this is the g-function, defined by Affleck and Ludwig in [3]. An 

off-critical version of this must therefore be constructed. 

3.4 Off-Critical g-function 

In a massive model, the g-function can be defined m a similar way to the CFT 

version [76, 78, 4]. One starts with the partition function Z(ala) [ L, R] for the theory 

on a finite cylinder of circumference L, length R and boundary conditions of type 

o: at both ends. In the R-channel description, time runs along the length of the 

cylinder, and the partition function is represented as a sum over an eigenbasis {l1h)} 

of Hcirc(lvf, L), the Hamiltonian which propagates states along the cylinder: 

00 

Z(ala)[L, R] = ( o:l e-Rwirc(M,L) lo:) = L (QI~?(t))2 e-REI,irc(M,L). (3.4.1) 
k=O 
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Here l = NIL, M is the mass of the lightest particle in the theory, and 

(3.4.2) 

where Ia) is the (massive) boundary state [72] for the a boundary condition. At finite 

values of l any possible infinite-volume vacuum degeneracy is lifted by tunnelling 

effects, making the ground state 1'1/Jo) unique. This gives Z(o:lo:) the following leading 

and next-to-leading behaviour in the large-R limit: 

ln Z(o:lo:) [ L, RJ "' - RE8irc ( NI, L) + 2ln g1~? ( l) . (3.4.3) 

It is the second, sub-leading term which characterises the massive g-function. Sub

tracting a linearly-growing piece - flo:)L, the g-function for the boundary condition 

a at system size l is defined to be 

(3.4.4) 

The constant flo:) is equal to the constant (boundary) contribution to the ground

state energy E~trip ( R) of the £-channel Hamiltonian Hstrip ( R) = H(!j1;) ( R), which 

propagates states living on a segment of length R and boundary conditions a at both 

ends. 

An alternative expression for g can be obtained by comparing (3.4.3) with the £

channel representation, a sum over the full set {E~trip(R)} of eigenvalues of Hstrip(R): 

00 

Z [L RJ 
= ~ e-LE~trip(M,R) 

(o:lo:) ' ~ . (3.4.5) 
k=O 

As R is sent to infinity, this gives the g-function: 

lnglo)(l) ~ ~ 1~ [ln (~ e-LE:""IM,R)) + 2fln) L + REg;.c(M, L)l . (3.4.6) 

In theories with only massive excitations in the bulk and no infinite-volume vac

uum degeneracy, ln 9io:) ( l) tends exponentially to zero at large l, while in the UV 

limit l ---> 0 it reproduces the value of the g-function in the unperturbed boundary 

conformal field theory. 

In the CFT case, at this point the modular invariance of the partition function 

was employed to solve for the g-function, however for massive theories this is not 

available and instead the energy, E~trip ( 1\1, R), must be estimated using the particle 

basis of states and thermodynamic Bethe Ansatz. 
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3.4.1 L-channel TBA 

Consider the theory on a cylinder of length R and circumference L with boundary 

conditions a and (3 at the ends. There are two TBA descriptions, the L-channel 

and the R-channel. The first construction of the off-critical g-function was made, 

in [76] (making use of results from [77]), using the L-channel TBA which will now 

be described. Taking time evolution along the circumference of length L the Hilbert 

space is constructed along the finite length R. In the limit R-----+ oo, the Hilbert space 

in this description is given by scattering states and the construction of the TBA 

equation and minimisation of the free energy is analogous to the case with periodic 

boundary conditions described in section 2.5. The main difference here is that in the 

largeR limit, the partition function has a boundary contribution from the g-function, 

as shown in (3.4.3), so the TBA method results in an expression for this g-function. 

The details of this calculation are presented below. 

Assume for convenience that the theory has N particles, all of the same type, 

and take them to be sufficiently well spaced to be considered asymptotic. Analogous 

to the TBA on the torus, discussed in section 2.5, when one particle moves towards 

another, interacts with it and moves past until it can again be taken to be asymptotic, 

the wavefunction picks up a factor of the S-matrix. If this particle moves to the 

right, bounces off the boundary, where the wavefunction picks up a factor of R(O), 

and returns to its original position the resulting wavefunction should be equal to 

that obtained when the same particle performs the same operation to the left. This 

equality imposes the quantisation condition 

ei!IIRsinh(O;) (.IT _S(Oi _OJ)) Rf3(0i) = e-iMRsinh(O;) (.IT. S(-Oi _OJ)) ROi(-Oi)· 
J=l,rf.z J=l,Jf.z 

(3.4. 7) 

By unitarity, s- 1(0) = S( -0) and R- 1 (0) = R( -0) so this condition can be rewritten 

as 

e2iMRsinh(O;) (. ft . S(Oi _ Oj)S(Oi + Oj)) R(3(0i)ROi(Oi) = 1 
J=l,Jf.z 

with Oi > 0. Taking the logarithm of this 

(3.4.8) 

(3.4.9) 
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In the thermodynamic limit, R----? oo and N ----? oo, a continuous particle density can 

be introduced 

(3.4.10) 

where dis the number of particles with rapidity between e and e + t:1e. This can be 

defined for negative rapidity by p( -e) = p( e) and the quantisation condition, written 

in terms of this density, is 

2A1Rcosh(e) + 2n j cp(e- e')pr(e)de' 

+ 2n ( -2¢(2e) + tc/Ja(e) + tc/J~(e)- b(e)) = 2np(e) 
(3.4.11) 

where p(e) = pr(e) + ph(e) is the level density, cp(e) = - 2~J0 lnS(e) and c/Ja(e) = -* J0 ln Ra(e). Note that the terms -4n¢(2e)- 2nb(e) here result from the fact that 

the original sum in (3.4.9) is over ei where ei =I 0 and ei =I ej. 

The number of states, N[pr (e)], with effective particle density pr (e) is given by 

the number of possible configurations of particles. If D = p(e)L:1e is the maximum 

number of rapidities in the interval ( e' e + £1())' this number is just 

(3.4.12) 

As in the torus TBA this can be written as 

(3.4.13) 

using Stirling's formula ln r( z) "' z ln z - z + .... The partition function is 

Z = L e-LE = j V[pr(e)]N[pr(e)]e-LE[pr(o)] 
states 

(3.4.14) 

where the energy of each configuration is 

(3.4.15) 

In the R ----? oo limit, the logarithm of the partition function is given by 

lnZ"' -REgirc(L) + ln(ga(L)g~(L)) 

= loa [-L.M cosh( e)pr (e) + p ln p- pr ln P(P- pr) ln(p- p'') J de 
(3.4.16) 
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and this can be minimised, subject to the constraint from (3.4.11), in the same way 

as the log of the torus partition function (2.5.15) was treated in section 2.5. First the 

TBA equation is found by setting c5(3.4.16)/c5pr(B) = 0 where 

(3.4.17) 

Notice that the integrand of (3.4.16) is the same as that in (2.5.15), and the con

straint (3.4.11) differs from (2.5.10) by terms independent of pr(B) therefore the TBA 

equation here is exactly that of the periodic boundary case 

c:(O) = M L cosh( B)- J ¢(0- 0') ln(1 + e-E(O'l) dO' (3.4.18) 

where the pseudoenergies are defined by pr (B)/ (p( B) - pr (B)) = e-E(O), as before. The 

difference in this case comes when simplifying the integrand, I, of (3.4.16) using this 

TBA equation. Writing the integrand in terms of the pseudoenergies: 

(3.4.19) 

and replacing p( B) here with the constraint ( 3.4.11) gives 

1 
I=- M L cosh(O)pr(B) + -M R cosh( B) ln(1 + e-E(Ol) 

7f 

+ J ¢(0- B')p1'(0') dO' ln(1 + e-E(O)) (3.4.20) 

+ (~¢a(B) + ~¢~(0)- 2¢(20)- c5(0)) ln(1 + e-E(O)) + pr(O)c:(O). 

Using the TBA equation then results in 

-JV!Rcosh(B)- 2¢(20) + -¢0 (0) + -¢~(0)- c5(0) ln(1 + e-E(O)) dO. 1
00 

( 1 1 1 ) 
0 7f 2 2 

(3.4.21) 

Once the range of 0 is extended by symmetry, the ground state energy, without the 

bulk contribution is given by 

(3.4.22) 

which is the usual result from the TBA on a torus, and the off-critical g-function is 

(3.4.23) 
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This result can be extended to a theory with N particle species where 

1 N r 
ln 9a(l) = 4 L }Ill dB 8a(B) ln(1 + e-Ea(lil), 

a=l IR 

(3.4.24) 

8a(B) = (<P~a)(B)- 2¢aa(2B)- b(B)) and now <P~a) = --;Je lnR~a)(B) and cPaa(B) = 
i d 

- 2tr 7i ln sa a (e) . 

This was tested extensively for the Yang-Lee model (introduced below) in [79] 

using conformal perturbation theory (CPT) and the boundary truncated conformal 

space approach (BTCSA). It was shown that for non-zero M, the /~dependence of 

(3.4.24) is incorrect, both in the total change in 9a(l) between the UV and IR, and 

in the behaviour of the small-/ series expansion. However, the dependence of 9a(l) 

on boundary parameters at fixed l, and the ratios of the g functions, 9a(l)fgf3(l) 

are in good agreement with the CPT and BTCSA results. The formula for 9a(l), 

given in (3.4.24), should therefore be modified by adding some boundary condition 

independent terms. 

Possible sources of error in this construction of the g-function could be the saddle 

point evaluation of the partition function, or corrections from the next-to-leading 

term in Stirling's formula [79]. These problems will also exist in the calculation of 

the effective central charge, however as this is a leading order term, as opposed to the 

next-to-leading order g, the resulting errors are no larger than the numerical errors 

in the CPT and TCSA. 

One might also think that problems with this equation ought to occur with the 

presence of boundary bound states in the spectrum. This was examined in [79], again 

for the Yang-Lee model. This is the nonunitary minimal model M 2,5 with central 

charge c = -22/5. It has two primary fields ]_ and <p with conformal dimensions 

hn = 0 and h'P = -1/5 respectively, and two conformal boundary conditions: ]_ with 

no relevant boundary fields and <I> with one relevant boundary field ¢. The bulk 

spectrum contains a single particle, with two particle S-matrix [80] 

sinh(~ + inx) 
(x) = 2 6 

· h(li inx) · sm 2-6 
S(B) = -(1)(2) (3.4.25) 

The reflection factors corresponding to the boundary conditions <I>(J.L) (where 1-l is the 

boundary coupling) and ]_ are [78] 

(3.4.26) 
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where 

R.(B) ~ m m Gf [s (o +i1rb;
3

) s (o- inb; 
3

) r (3.4.27) 

and the relation between the boundary coupling J-L and the parameter b is [78] [79] 

J-L = -IJ-Lcl sin ( 7r(b ~ 0.5)) ]V[6/5 (3.4.28) 

-7r3/524/5 1/4 sin(27r/5) (r(2/3)) 6/5 
J-Lc = 5 

(f(3/4)f(4/5))1/2 r(1/6) 

For this model, two concerns with the equation (3.4.24) were identified in [79]. The 

first is that the two distinct boundary conditions, ip(J-L( b = 0)) and ]_ are described 

by the same reflection factor and so have the same kernel function ¢0 , but they have 

different g-functions. The second problem is that the kernel ¢b, describing the ip(J-L( b)) 

boundary condition has poles which are b-dependent and which cross the real axis 

for b = ±1. Taking (3.4.24), with the integration contour always along the real axis 

therefore leads to a g-function with discontinuities at b = ±1, whereas physical g

functions ought to be continuous in b. These problems are resolved if the integration 

contour, rather than being the real line in every case, is taken to be dependent on 

the boundary condition. 

In [79], it is shown that the correct ratio of g-functions is found if the real line is 

taken as the contour for ln 9ll· This is also the case for ln 9<I>(M(b)), when -3 < b < -1. 

To identify the relevant contour for the boundary condition ip(J-L(b)), for other values 

of b, the terms in the integrand of ln 9<I>(M(b)) with b-dependent poles must first be 

identified and treated separately: 

( 
. b + 3) ( . b + 3) c/Jb(O) = c/Jo(B) - ¢ ()- m-

6
- - ¢ () + m-

6
- (3.4.29) 

so for -3 < b < -1 

1
00 

( ( b + 3) ( b + 3) ) EO d() lng<l>(J.l(b)) = lngll- -oo ¢ ()- i1r-
6

- + ¢ () + i1r-
6

- ln(l + e- ( l) 
4

7r. 

(3.4.30) 

The two terms in this integral give the same contribution when the contour is along 

the real axis, so for -3 < b < -1 

1
00 

( . b + 3) -<(0) d() ln 9<I>(M(b)) - ln 9ll = - ¢ ()- l7r-- (1 + e )-. 
-oo 6 27r 

(3.4.31) 
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NOW ¢( e - in b!3
) has poles at 

b-5 e = in-6- + 2nni 
b-l ' e = in-6- + 2nni (3.4.32) 

b+1 e = in-6- + 2nni 
b+5 e = in-6- + 2nni 

so when b passes through -1, the contour must deform away from the real axis and 

encircle the pole at in(b + 1)/6. This pole is then called 'active'. The same then 

happens as b passes through 1, when the pole at in(b- 1)/6 becomes 'active'. This 

is shown in figure 3.13, taken from [79]. 

0 .. , 
8== JrrT 

(J ,_, 
8::::: u 15 

X 8= lftb~l 

Figure 3.13: The contour for lngq,(J.l(b)), from [79] 

In [4], a new expression for the g function was proposed and tested for the Lee

Yang case. The construction avoids the use of the saddle point approximation by 

employing an n-particle cluster expansion technique. Before this is discussed, it is 

necessary to introduce the R-channel TBA [76] as this will be used later on. 

3.4.2 R-channel TBA 

Taking time along the length, R, of the cylinder the partition function is 

(3.4.33) 

where H is the Hamiltonian of the bulk system. The boundary states can be written 

as [72] 

(3.4.34) 
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for infinite L. For simplicity, consider a model with 1 type of particle. The partition 

function for this model, in the R-channel, can be written as 

(3.4.35) 

with Ea = 2..:;:1 2/vf cosh ()i· Formally, this is a sum over all the states in the theory, 

but due to the form of the boundary state the only states Ia) which contribute to 

this sum must have the form 

la2N) = jeN,-eN,···,e1,-e1) 

At(eN)At(-eN) ... At(ei)At(-ei)jo) (3.4.36) 

with ()N > ()N-1 > ... > ()1 > 0. The inner product (Bala2N) is then given by 

1 roo N d()i ~ 
(Bala2N) = N! Jo IT 271" Ka(()i) 

t=l 

(OIA( -ei)A(e1) ... A( -eN )A( eN )At (eN )At (-eN) ... At ( ei)A t ( -ei) IO). 

(3.4.37) 

The operators A and At can be rearranged using the Faddeev-Zamolodchikov algebra: 

At (e) At ( ()') 

A( e)A( ()') 

S( e - ()')At ( e')A t (e) 

- S( () - ()')A( ()')A( e) (3.4.38) 

and using this (3.4.37) becomes 

N 

(Bala2N) = (b(O))NII Ka(ei) (3.4.39) 
i=l 

where the ( b(O) )N term results from the terms nib(()- ()i)· Introducing pair creation 

operators defined as B(e) = A(-e)A(e) and Bt(e) = At(e)At(-e) they can be easily 

shown to satisfy 

B(e)B(e') 

Bt(())Bt(e') 

B(e)Bt (e') 

B( ()') B ( ()) 

Bt(e')Bt(e) (3.4.40) 

Bt(e')B(e) +£52 (()-()')+ b(B- B')S(B'- e)At(-e')A(-0) 

+b(e- e')At(e')A(e). 
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The norm (o:2Nio:2N) can be written in terms of these pair operators 

(o:2Nio:2N) = (OIA( -OI)A(OI) ... At(OI)At( -OI)IO) 

= (OIB(OI)B(02) ... Bt(o2)Bt(OI)IO) 
(3.4.41) 

and using the algebra above this becomes 

(3.4.42) 

Therefore the partition function is simply 

N 

Zab = L II Ka(Oi)Kb(Oi)e-RL~J2Mcosh(O;)_ (3.4.43) 
Q i=l 

Following the method described earlier, the density of pairs of particles is intro

duced, pr(O) = d/ ~0, where dis now the number of pairs of particles with rapidity 

in the interval ( 0, 0 + ~0). In terms of this density, the energy becomes an integral: 

(3.4.44) 

and the partition function is 

Zab = J D[pr(O)J exp (1oo [ln(Ka(O)Kb(O))- 2RM cosh(O)] pr(O)dO + S(pr)) 

(3.4.45) 

where S is the entropy of the particle configuration described by the distribution 

pr(O), as above. 

The momenta are constrained by the quantisation condition on the states lo:2N): 

eiMLsinh(li;)S(20i) II S(Oi- Oj)S(Oi + Oj) = 1. 

#i 

(3.4.46) 

This is exactly the same as the quantisation condition found in the periodic case 

when each particle of rapidity 0 is accompanied by another with rapidity -0. Taking 

logs of this, introducing the level density p = pr + ph, and differentiating gives 

21rp = 111 Lcosh(O)- 27f 100 

(¢(0- 0') + ¢(0 + 0')) pr(e')de' (3.4.47) 

with ¢(e) = - 2~i Jo ln S (e). For large L, the logarithm of the partition function is 

ln Zab ~ - LE~trip ( R) 

= 100 

(ln(Ka(O)Kb(e))- 2RM cosh(e)) pr(e) + S(pr). 
(3.4.48) 
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The TBA equation can be found, using the same method as described earlier: set 

5(3.4.48)jc5pr(e) = 0 where 

5(3.4.48) = 8(3.4.48) + J 5p(B') 8(3.4.48) dB' 
5pr (e) 8pr (e) 5pr ( 0') 8p( 0') . 

(3.4.49) 

Now from the constraint (3.4.47) it is clear that 

(3.4.50) 

and the derivative of (3.4.48) with respect to the level density is the same as for the 

previous cases 
8(3.4.48) =I (1 -E(fJ)) 

8p(B) n + e ' (3.4.51) 

but the derivative with respect to the root density is different 

(3.4.52) 

which leads to a TBA equation which is different to the £-channel and periodic 

boundary condition cases: 

E(B) =2Rlvf cosh( B) -ln(Ka(B)Kb(B)) 

+ 100 

(¢(0- e')¢(0 + e')) ln(1 + e-f(fJ')) de'. 
(3.4.53) 

Writing the integrand of (3.4.48), denoted I, in terms of the pseudoenergies gives 

and replacing p, using the constraint (3.4.47), leads to 

I =(ln(KaKb)- 2RA1cosh(B))pr(e) + 2_A1Lcosh(B)ln(1 + e-E(fJ)) 
27r 

+ 1oo (¢(0- 0') + ¢(0 + 0')) pr(B') ln(l + e-f(fJ)) dB'+ pr(B)E(B). 

Then, with the TBA equation (3.4.53), this simplifies to give 

1 
I= -A;J Lcosh(B) ln(1 + e-E(fJ)). 

27r 

(3.4.55) 

(3.4.56) 

Since K(B) = K( -B), the term Ka(B)Kb(B) is even in e so the domain of the 

definition of E( e) can be extended to the whole real axis by E( -e) = E( e). This can 
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also be extended to a theory with N particle types, for which the ground state energy 

on an interval of length R is 

N 

E~trip(M, R) = - L 1 d() Ma. cosh(B)La.(B) + £111~ R +fa+ ff3 
a.=l IR 4n 

(3.4.57) 

where £111f R is the bulk contribution to the energy, fa, ff3 are R-independent con

tributions to the energy from the boundaries and La.(B) = ln(1 + e-Ea(0l). The TBA 

equation for this theory, written in terms of the reflection factors is 

Ea.(B) =2Ma.R cosh(B) -ln ( R~a.) (i% - ()) R~a.) (i% + ())) 

N 

- L 1 d()'¢a.b(()- ()')Lb(B'). 
b=l IR 

(3.4.58) 

In [78], generalisations of these equations are shown to govern the excited state 

energies E~trip (!vi, R). The idea is to use analytic continuation to move between 

energy levels [81]. In [78], rather than derive the results using the method of [81], the 

formulae are conjectured and then checked using the boundary truncated conformal 

space approach (BTCSA). In the largeR limit these generalisations reduce to simple 

forms. If the nth excited state is made up of rn = 2::=1 rn(a.) particles, rn(a.) being the 

number of particles of type a, then 

N m(a) 

E~trip(lvi, R)- E~trip(M, R) = L L !via cosh(Bia.)) + O(e-RM). 
a.=l i=l 

The rapidities, eia.), satisfy the Bethe ansatz equations 

2nn;a.) = 2111a.Rsinh(eia.))- iln(R~a.l(e}a.l)R~a.l(eia.))) 
N 

- LLiln(-Sa.b(e}a.l +Bjbl)) 
b=l j#i 

N 

- LLiln(-Sa.b(e}a.l -e)bl)). 
b=l j#i 

(3.4.59) 

(3.4.60) 

These equations are used in [4] to find an exact IR expansion of the g-function, by 

employing a cluster expansion. This will be briefly discussed below for a theory with 

only a single particle type. 
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3.4.3 Cluster Expansion 

In the R -----+ oo limit, the g-function, given in (3.406), becomes 

2ln 9a(l) = RE~irc + 2faL - LEgtrip + ln (1 + f e-L(E~trip_E~trip)) + 0( e-Rl\I) 
k=l 

(3.4061) 

and since, for R » L » 0, Egtrip = £1112 R + 2fa + O(e-RM), the g-function, to 

leading order is 

2ln 9a(l) rv R(E~irc- £1112 L) + ln (1 + f e-L(E~trip_E~trip)) 
k=l 

(304062) 

The cluster expansion involves letting L-----+ oo, along with R-----+ oo, so that the right 

hand side of (3.4062) can be expanded in terms of 1, 2,0 0 0 particle contributions, each 

of which can be estimated using the Bethe ansatz approximated levels in (3.4059) and 

(3.4060)0 The hope is then to resum this expansion to give an exact expression for 

the g-functiono 

Taking the large-R equation (3.4062) and truncating at the one-particle level leaves 

2lnga rv R(E~irc- £lvf 2 L) + ln (1 + L e-lcosh(Ol(nl))) 

rq>O 

(3.4063) 

and the one-particle Bethe ansatz is essentially that of a free particle 

(304064) 

In the large-R limit, there is a continuum of possible rapidities so the Bethe ansatz 

becomes 

~:1 
( 111 R cosh(01 ) - i d~ ln Ra(Ol)) = 1. 

The sum in (3.4063) becomes an integral 

L e-lcosh(Ol) = ~ ( f e-lcosh(Ol) - e-l) 

n1>0 n1=-oo 

-----+ ~ f dO (J(ll(e) _ b(O))e-lcosh(8) 
2 JJR 

(3.4065) 

(3.4066) 

with the Jacobian, j(ll(e), for the change of variables nl -----+ el = e, from (304065), 

being 
111R 

J(ll(e) = -cosh( e)+ c/Ja(e) 
7f 

(3.4°67) 
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where c/Jo. = - :;i: :fo ln R0 . The cosh term here cancels with the leading order part of 

R(E0irc- £M2L), so the one-particle contribution to lng is 

2lng =! f dO (c/Jo. _ 6(0))e-tcosh(e). 
2 JJR 

(3.4.68) 

This disagrees with the large-l behaviour of (3.4.24), in particular, there is no ¢(20) 

term. However, the hope is that it gives an indication of how to modify the previous 

result (3.4.24). The assumption is that the final result will depend, like (3.4.24), 

on the single-particle energies only through the TBA pseudoenergies E(O). The first 

observation to make, therefore, is that the large-l asymptotic of (3.4.68) also emerges 

from 

(3.4.69) 

which is the resummed, or 'dressed' version of (3.4.68). Numerically, in [4], it is shown 

that (3.4.69) is more accurate than (3.4.68) and this is because it actually contains, 

not just one-particle contributions, but n > 1 particle contributions also. 

The next step is to consider the two-particle contributions. Some of these will be 

taken care of by the one-particle resummation, but there are some new terms: 

2lng
0 
=2[lng0]~) + ti

2 

d0 1d0 2 cp(0 1 +02)¢(01 - o2)e-lcosh(OI)-Icosh(Oz) 

_! { d0¢(20)e-2lcosh(e). 
2 JJR 

This can then be resummed as 

and the final result is given by 2ln go. = 2[ln go.]~) + 2[1n go.]~) + .... 

(3.4. 70) 

(3.4.71) 

The observation made in [4] is that if the first few terms are corrected with 

e -I cosh( e) ----t 1 
1 + eE(O) 

(3.4. 72) 

then the only contribution from the next order is of the form 

(3.4.73) 
X e-lcosh(OI) ... e-lcosh(On) 
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along with an additional term containing a single integration over ¢(28). The final 

conjecture is then to replace l cosh(8) with t:(8) and resum as 

1 d8¢(28) ( -~e-2/cosh(O))----> -1 d8¢(28) (ln(1 + e-E(O))-
1 
+

1
eE(O)) (3.4.74) 

which leads to the final result 

2lngn(l) =~ { d8(¢n(8)- 6(8)- 2¢(28))1n(1 + e-dOl) 
2 1&. 

~ 1 r d81 d8n 
+ ~ -:;;, }&.n 1 + eE(OJ) ... 1 + eE(On) 

(3.4. 75) 

with 8n+ 1 = 81. This conjecture was tested numerically for the case of the Lee-Yang 

model in [4] and also extended to the purely elastic scattering theories with N particle 

species, for which the exact g-function is proposed to be 

X rPa1a2(81 + 82)rPa2a3(82- 83) · · · rPanan+! (8n- 8n+d 

where 8n+l = 81 and an+l = a1. 

(3.4.76) 

The derivation of this conjecture avoided some of the problems that could afflict 

a more direct calculation, for example, in working in the limit l ---+ oo, the particles 

are always well separated so the accuracy of the Bethe ansatz is not in question. 

However, a direct approach would be desirable, especially for the generalisation to 

more complicated models. There has been an attempt at this by Woynarovich, [82], 

who proposed an expression for the 0(1) corrections to the free energy for a one

dimensional Bose gas with repulsive 6-function interaction, obtained by calculating 

corrections to the standard saddle point result. Although his expression has some 

of the features of the result here there are important differences. In particular, for 

the field theory case, the result in [82] is divergent in the UV limit so it cannot be 

consistent with the g-function of a CFT. The direct construction of the g-function 

therefore remains an open problem. 

In [4], only the conjecture (3.4.75) has been tested for the Lee-Yang model, so the 

aim of the next chapter is to test the generalisation of this, (3.4.76), for a variety of 

purely elastic scattering theories. This work has been published in [1]. 



Chapter 4 

ADET cases 

In this chapter the investigations of [4] are extended to a collection of theories for 

which boundary UV /IR relations have yet to be found, namely the minimal purely 

elastic scattering theories associated with the ADET series of diagrams [83, 32, 84, 

85, 86, 87, 88]. The bulk S-matrices of these models have long been known, but less 

progress has been made in associating solutions of the boundary bootstrap equations 

with specific perturbed boundary conditions. A collection of minimal reflection fac

tors for the ADET theories are presented, and then tested by checking the g-function 

flows that they imply. It is also shown how these reflection factors can be modified 

to incorporate a free parameter, which generalises a structure previously observed in 

the Lee-Yang model [78]. This enables the prediction of a number of new flows to be 

made between conformal boundary conditions. 

4.1 The ADET family of purely elastic scattering 

theories 

The purely elastic scattering theories that are treated in this chapter fall into two 

classes. The first class associates an S-matrix to each simply-laced Lie algebra g, of 

type A, D or E [83, 32, 84, 85]. These S-matrices are minimal, in that they have no 

zeros on the physical strip 0 :=::; 2Jm e :=::; 1r, and one-particle unitary, in that all on

shell three-point couplings, as inferred from the residues of forward-channelS-matrix 

poles, are real. They describe particle scattering in the perturbations of the coset 

conformal field theories g1 x gifg2 by their (1, 1, ad) operators, where g is the affine 

89 
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algebra associated with g . More will be said about affine Lie algebras and coset 

models below. The unperturbed theories have central charge 

2T g 

c = (h + 2) ' (4.1.1) 

where T 9 is the rank of g, and h is its Coxeter number. These UV central charges can 

be recovered directly from the S-matrices, using the thermodynamic Bethe ansatz [30, 

32] as described in section 2.5. Some of these theories are also perturbed Virasoro 

minimal models. These are listed in table 4.1 along with the corresponding critical 

statistical model and relevant perturbing operator. 

g Minimal Model Statistical Model Perturbing Operator Conformal weight 

c/Jr,s hrs 
' 

A2 M5,6 Three-state Potts ¢21 2/5 

energy density 

E6 M6,7 Tricritical ¢12 3/8 

three-state Potts thermal operator 

E1 M4,5 Tricritical Ising ¢12 1/10 

energy operator 

Es M3,4 Ising ¢13 1/2 

magnetic field 

Table 4.1: Perturbed minimal models described by perturbations of the coset theories 

lJ1 X gJ/g2 

The ADE S-matrices describe the diagonal scattering of T 9 particle types, whose 

masses together form the Perron-Frobenius eigenvector of the Cartan matrix of g. 

This allows the particles to be attached to the nodes of the Dynkin diagram of 

g. Each S-matrix element can be conveniently written as a product of elementary 

blocks [83] 

as 

{x}=(x-1)(x+1), 
sinh (f!. + i1rx) 

(x) = 2 2h 
· h ((} i1rX) sm 2 - 2h 

Sab = IT {x}, 
xEAab 

( 4.1.2) 

(4.1.3) 
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for some index set Aab· Note that 

(0)=1, (h)=-1, (-x)=(x)-1
, (x±2h)=(x). (4.1.4) 

The notation (4.1.2) has been arranged so that the numbers x are all integers. The 

sets Aab are tabulated in [83]; a universal formula expressing them in geometrical 

terms was found in [85], and is further discussed in [86, 87]. 

The S-matrices of the second class [89, 80, 90] are labelled by extending the set 

of ADE Dynkin diagrams to include the 'tadpole' Tr. They encode the diagonal 

scattering of r particle types, and can be written in terms of the blocks (4.1.2) with 

h = 2r+1 [91]: 
a+b-1 

Sab = II {l}{h -l}. 
l=la-bl+l 

step 2 

(4.1.5) 

These S-matrix elements are again minimal, but they are not one-particle unitary, 

reflecting the fact that they describe perturbations of the non-unitary minimal models 

M 2,2r+3 , with central charge c = -2T(6r + 5)/(2r + 3). The perturbing operator this 

time is ¢ 13 . The Tr S-matrices are quantum group reductions of the sine-Gordon 

model at coupling /32 = 167r / (2T+3) [89], a fact that will be relevant later. 

A self-contained classification of minimal purely elastic S-matrices is still lacking, 

but the results of [88] single out the ADET theories as the only examples having 

TBA systems for which all pseudoenergies remain finite in the ultraviolet limit. 

The ADET diagrams are shown in figure 4.1, with nodes giving the conventions 

employed here for labelling the particles in each theory. For the Dr theories, particles 

r-1 and rare sometimes labelled sands', or sands, for r even or odd respectively. 

4.2 Affine Lie algebras and their role in Conformal 

Field Theories 

Before the reflection factors for the AD ET theories are presented it is useful to 

digress slightly and discuss CFTs with associated affine Lie algebras g. This serves, 

not only to understand the role of these infinite algebras, but also to introduce some 

formulae for the modular S matrices, which will be of use later in calculating the 
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... .... ---
r I 

(a): Ar 

2 

• • I • • 1 4 I 

(d):E6 

e • • . .. . <r-1 
I r r 

(b): Dr 

• • • I • • 6 

(e): E 1 

• • • . . . . e::::J 
2 3 

(c): Tr 

4 

• • • • I • • 
~ (! 

(f): Es 

Figure 4. 1: Dynkin diagrams for the AD ET Lie algebras 

crit ical (CFT) g-functions for the ADE related theories. The discussion presented 

here follows closely that found in chapters 14-18 of DiFrancesco et al. [5] and in the 

review by Goddard and Olive [92]. See also the book by Kac [93] for more information. 

4.2.1 Affine Lie algebras 

Consider the generalisation of a Lie algebra g, with generators Ja , where elements of 

the algebra are also Laurent polynomials in some variable t. Denote the set of such 

polynomials by C[t, C 1
]. This generalisation is called the loop algebra 

(4 .2 .1) 

generated by J~ = Ja 0 tn; the generators satisfy the commutation relations 

[J~ , J~] = L ij~b J~+m · (4.2 .2) 
c 

A central extension of this algebra is obtained by adding a term of the form L i dc:!:niki 

where [J~ , ki] = 0. The constants d~ni are constrained by the J acobi ident ity, and 

in a basis where the structure constants f~b are totally ant isymmetric, all bar one of 

the central terms can be removed by a redefinition of the generators. The extended 

algebra is t hen 

(4.2.3) 
c 

A convenient basis for the finite-dimensional Lie algebra g consists of a set of 

mutually commuting generators, H&, i = 1, ... , r 9 , of the Cartan subalgebra, along 

with particular combinations of the generators Ja, denoted Ea , that satisfy 

( 4.2.4) 
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The vector a = ( oJ, ... , oh) is called a root and g::x is the corresponding step op

erator. The root components are the non-zero eigenvalues of the H& in a particular 

representation, called the adjoint,where the Lie algebra itself serves as the vector 

space on which the generators act. 

To construct a basis for the extended algebra, following the lines above, one must 

first construct the analogue of the Cartan subalgebra (CSA) of the finite Lie algebra. 

Starting with this CSA, H~ of g, the central element k can then be added giving an 

( r + 1 )-dimensional Abelian subalgebra. In the adjoint representation 

ad(H~)E~ 

ad(k)E~ [k,E~] = 0, 

(4.2.5) 

(4.2.6) 

so each of the roots ( o:l, ... , o:rg, 0) = (a, 0) is infinitely degenerate. To cure this 

problem, an extra element La = -tft can be added to the algebra g to distinguish 

between the E:;: for different n. This satisfies the commutation relations [La, J~] = 

-nJ~, [La, k] = 0. The resulting algebra 

( 4.2. 7) 

is an affine Lie algebra (also known as a Kac-Moody algebra). The usual basis is 

given by the generators of the CSA, fi == {HJ, ... , H~9 , k, La}, along with the step 

operators E:;: and H; which correspond to the roots a and nt5 respectively. 

The next step is to find an analogue in g of the invariant scalar product, or Killing 

form, on g. This must be symmetric and satisfy 

([Z, X], Y) + (X, [Z, Y]) = 0, X, Y, Z E g (4.2.8) 

which constrains the inner products, up to an overall constant, to be 

b b ~ ~ ~ 

(J~, Jm) = ba bn+m,a, (J~, k) = 0, (k, k) = 0 

(J~, La)= 0, (La, k) = -1. 
(4.2.9) 

The only unspecified norm is (La, La) which is often chosen to be zero. 

For an arbitrary representation, it is always possible to find a basis, {I~)}, of 

simultaneous eigenvectors of the CSA such that 

( 4.2.10) 
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~ 

The vector A of simultaneous eigenvalues is known as an affine weight 

............ -- 1 ............ -- ........... 
A= (,\(H0 ), ... , ,\(H~); ,\(k); ,\( -L0 )) 

(4.2.11) 
= (A;k_x;n) 

where A is a weight of g. The weights live in a space dual to the CSA and this can 

be encoded using the Killing form: for each element X(H) in the dual space, there 

must be an element H.x in the CSA, such that 

X( H) = (H.x, H). ( 4.2.12) 

The scalar product of two weights is then induced by the Killing form 

( 4.2.13) 

As in the finite-dimensional case, weights in the adjoint representation are called 

roots. Since k commutes with all the generators of g, its eigenvalue on the states of 

the adjoint representation is zero. The affine roots, associated with the generators 

E;: are therefore 

n = (a; 0; n) , n E 12 , a E ~ ( 4.2.14) 

where ~ denotes the set of all roots of g. This has the same scalar product as the 

finite case: (n, ,6) =(a, j3). The roots associated to H~ are 

nl5 = (0; 0; n), n E 12, n =/= 0. (4.2.15) 

These have length ( nl5, nt5) = 0 and each one is orthogonal to all other roots so they 

are often called imaginary roots, whereas ( 4.2.14) are known as the real roots. 

A basis of simple roots must now be identified, in which the expansion coefficients 

of any root are either all non-negative or all non-positive. This basis contains the r 

finite simple roots ai of g along with one extra simple root 

no= ( -,P; 0; 1) ( 4.2.16) 

where ,Pis the highest root of g, from which all roots of g can be obtained by repeated 

subtraction of simple roots. A positive root is then given by 

(a;O;n) > Oifn > 0, or ifn = 0 and a E ~+' (4.2.17) 
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where .6.+ is the set of positive roots of g. The condition, n > 0 and a E .6., for a 

positive root is not immediately obvious but by rearranging 

a+ nl5 = na0 + (n- 1)1/J + (,P +a) (4.2.18) 

the expansion coefficients of the final two factors in terms of finite simple roots are 

non-negative. Given a set of affine simple roots and a scalar product, the extended 

Cartan matrix is defined in terms of the roots ai and coroots OJ-= 2nJ/InJ 12 

cij = (ai, Oj -)' 0::; i,j:::; Tg 

2(ai, aj) 
laj12 

(4.2.19) 

From this definition it is clear that C is formed from the Cartan matrix C of g 

by the addition of an extra row and column given by (a0 , a 0-) = l'l/JI 2 = 2 and 

(a0 ,aJ-) = -('ljJ,aJ-)· Note that the expansion coefficients of 'ljJ, when written 

in a basis of simple roots, or coroots of g, are known as marks ai and comarks ai

respectively, so -(1/J, aJ -) = - 2::~! 1 ai(ai, aj -). All the information contained in the 

extended Cartan matrix can be encoded in the extended Dynkin diagram. This can 

be obtained from the Dynkin diagram of g by adding an extra node corresponding to 
~ ~ 

a 0 joined to the other nodes by C0iCw lines. The extended Dynkin diagrams for the 

ADE theories are shown in figure 4.2. The nodes are labelled by the ordering of the 

roots and the comark. Note that the zeroth comark (and mark) is defined to be 1 

so the dual Coxeter number h = 2::~!0 ai- is equal to the Coxeter number h for these 

simply laced theories. 

-----The affine Weyl group, W, like the finite-dimensional case, is generated by the 

reflections 

( 4.2.20) 

in the hyperplanes normal to the real roots a. This group permutes the real roots, 

as 

( 4.2.21) 

where a= (a; 0; n), a' = (a'; 0; n') and a 0 (a') is the Weyl reflection for the finite

dimensional case. The imaginary roots, on the other hand, are left invariant. 

In physical applications, £ 0 is often identified with energy so its spectrum must 

be bounded from below. Such a representation is known as a highest weight repre-
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(0;1) 
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_____. 
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(1;1) (3;2) (4;3) (3;2) (1;1) 
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(e): Es 
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~ 
~) 

(I: I) 
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/ 
(r-2;2)~ 

• 
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~ ~ ~ 

Figure 4.2: Extended Dynkin diagrams for the affine Lie algebras A, D and E 

sentation. Using the commutation relation [La, J~] = -nJ~, if Lal:\) = .:\i:\) then 

( 4.2.22) 

so the action of J~ on an eigenvector of La with eigenvalue .:\ gives an eigenvector 
~ 

of La with eigenvalue A - n, if it is not annihilated. Since the spectrum of La is 

required to be bounded from below there must be some lowest eigenvalue, h>.., with 

corresponding eigenvector i:\h) which satisfies 

n > 0. (4.2.23) 

In such a representation, all states can be built up from the 'vacuum states' which 

satisfy ( 4.2.23) by repeated application of the operators jc:_n, n > 0. However, not 

a.ll of these representations are unitary. It will be shown below, following [92], that 

the unitary representations can be characterised by the vacuum representation of the 

corresponding finite algebra g or its highest weight JL, and the value of the central 

term k. 

The highest weight state, IJ.L), of the vacuum representation of g satisfies 

0 if either n > 0 or n = 0 and a E ~+ ( 4.2.24) 

0 if n > 0. 
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With respect to the CSA fi = (H, k, L0 ), this state has weight ji = (J.L, k, v) and the 

weight ji' = (J.L', k, v') of any state in the representation has the property that ji- ji' 

is a sum of positive roots. The representation is usually labelled by the highest weight 

ji but v, the lowest eigenvalue of L0 , is often ignored as it is a matter of convention. 

For each real root li = (a; 0; n) of g there is an su(2) subalgebra. generated by 

2n.fi 2( a.H + nk) 

l£il2 a2 
(4.2.25) 

The states in any unitary representation of g must fall into multiplets of this su(2) 

subalgebra. which implies that its set of weights ji' must be mapped into itself by 

the Weyl reflections (4.2.20). The weight ji' must therefore satisfy the condition that 

ji - iJ(ji') is a sum of positive roots of g for any IJ E W. Applying this to ji' = ji,: 

ji- iJO:(fi) = (ji, li~)ii = [(J.L, a~)+ kn](a; 0; n) (4.2.26) 

which, for a positive root ii, gives 

(4.2.27) 

The weights can be expanded, like the roots, in a basis of simple roots, however for 

the representations of interest the coefficients of these expansions are not integers. 

A more convenient basis is provided by the fundamental weights, which are dual 

to the simple coroots. For the finite algebra, g, the fundamental weights .Xi are 

defined by (.Xi, a 1 ~) = r5ij for 1 :::::; i, j :::::; r 9 . Any weight in a finite dimensional 

irreducible representation can be written in terms of these fundamental weights as 

.X' = 2::::~! 1 niAi where the coefficients, ni E Z are known as Dynkin labels. The 

highest weight J.L of the representation is the one with all Dynkin labels ni 2: 0. This 

is also called a dominant weight. 

For the affine algebra g, the fundamental weights Ai are defined in much the same 

way 

0:::::; i,j:::::; r9 . ( 4.2.28) 

The general solution to the condition ( 4.2.27), written in terms of these fundamental 

weights is 
rg 

ji = LniAi ( 4.2.29) 
i=O 
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ignoring the component in the L 0 direction. Using (4.2.13) and the decomposition of 

the highest root of g into a sum of coroots: 1/J = L~=l ai ~ai ~, the affine fundamental 

weights can be shown to be given by 

Ao (0; 1; 0) 

( 4.2.30) 

( 4.2.31) 

in terms of the fundamental weights Ai of g. They are assumed to be eigenstates of 

L0 with zero eigenvalue. The Dynkin labels in (4.2.29), fori= 1, ... r 9 are therefore 

the same as those in the finite case and the n 0 label is then fixed by the k eigenvalue, 

or rather the level l: 

( 4.2.32) 

Note that for the simply laced theories here l = k. So for the physically interesting 

representations, often called integrable representations, the Dynkin labels are all non

negative ni 2 0, i = 0, ... r 9 , and the representation can be specified by the level of 

the affine algebra g along with the highest weight of the corresponding representation 

of the finite algebra g. 

The Verma module of the highest weight state /:\) has the following singular 

vectors 

Egi /:\) 

(Eoa; )-X;+li:\) 

g;1/J/:\) = 0 

(E~1 )k-(-X,1/Jl+ 1 /:\) = 0, i -:f 0. 

(4.2.33) 

( 4.2.34) 

But when these vectors are quotiented out from the Verma module, the resulting 

module is not finite dimensional, unlike the finite Lie algebra case. This is because the 

imaginary root can be subtracted from any weight without leaving the representation. 

Define the grade to be the L 0 eigenvalue, shifted so that L0 /:\) = 0 for the highest 

weight state /:\). At grade zero, all states are obtained from /:\) by applications of the 

finite Lie algebra generators, as these are the only generators of g that don't change 

the L0 eigenvalue. Therefore, the finite projection of the weights at grade zero are all 

the weights in the g irreducible, finite dimensional representation of highest weight ..\. 

Weights at grade 1 can be obtained from those at grade zero that have positive zeroth 

Dynkin labels, by subtraction of a 0 , followed by all possible subtractions of simple 
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roots, and so on. The important point to note here is that the finite projections of 

affine weights at a fixed grade are organised into a direct sum of irreducible finite 

dimensional representations of g, so once the L 0 eigenvalue is taken into account, the 

multiplicity of weights is finite. 

The character of an integrable highest weight representation is defined as 

( 4.2.35) 

~' ~ 
The sum here is over all weights A in the representation of highest weight state jA), 

........... , _, ....... 

multx (A ) denotes the multiplicity of the weight A and e>. is a formal exponential. 

This satisfies 

>..'+-' e IL ( 4.2.36) 

(4.2.37) 

~ 

where the e on the RHS of ( 4.2.37) is a genuine exponential function, and ~ is an 

arbitrary weight. 

The character (4.2.35) can be written in a form known as the Weyl-Kac character 

formula: 
'1\' ~(-1)we -

ch- = emxo L....wEW w(.\+p) 
>. LwEW(-1)w8wp 

( 4.2.38) 

where ( -l)w is the signature of w, which is +1 or -1 if w is composed of an even or 

an odd number of reflections by simple roots, the Weyl vector pis the weight where 

all Dynkin labels are unitary and mx is the modular anomaly 

lA + Pi 2 IPI 2 

rrz,- = - --- . 
>. 2(k+h) 2h 

( 4.2.39) 

The generalised 8 functions, at a specific point~= -27Ti(c;; T; t) are given by 

8>._(~) = e-2nikt L e-ni(2k(o:·,.;)+2(.\,.;)-Tkla+>./kl2) 

dEQ. 

(4.2.40) 

where Qv is the coroot lattice of g. The normalised characters are X>.. = e-mx 6chx 

and at the point ~ = t = 0 they are known as specialised characters: 

X>._(T) = qmx Ld(n)qn = qmXTr>._qLo ( 4.2.41) 
n20 

where d( n) is the number of states at grade n and q = e2
niT. 
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Under modular transformations these specialised characters transform as 

Xj_( T + 1) L T).jlXil(T) (4.2.42) 

jlEP! 

X).(-1/T) L s).jlXil( T) . ( 4.2.43) 

jlEP! 

Note that the sum is over the weights in P!, the set of integrable weights at level 

k, which indicates that characters in such representations transform into each other 

under the action of the modular group. The transformation T -+ T + 1 induces a 

phase change only 

rr;__ - ;;_ e2nim5; 
.l).jl - u>..jl ' ( 4.2.44) 

whereas the modular S matrix is given by 

Ss,/i = illl+IIP/Qvl-~(k + h,trg/2 L ( -1)we-2ni(w(:A+p),JL+P)/(k+h) ( 4.2.45) 
wEW 

where I~+ I is the number of positive roots in g, P is the weight lattice and for g 

simply laced IP/Qvl = IP/QI = det Cij the determinant of the Cartan matrix. The 

matrices S and T are both unitary: T-1 = yt, s- 1 = st, and S simplifies to a 

product over the positive roots, ~+'of g when jl = kA0 (denoted 0 here): 

( 4.2.46) 

Note that this is real and positive. 

4.2.2 WZW models and Coset theories 

The gk Wess-Zumino-Witten (WZW) models are conformal field theories for which 

the spectrum generating algebra is the affine Lie algebra g. Unusually for a CFT, 

they can be formulated directly in terms of an action, of the form 

( 4.2.47) 

where k is a positive integer and r is the Wess-Zumino term r = 2ln J83 Tr(g- 1dg) 3 

which is an integral over a 3-dimensional space B 3 whose boundary is S 2
. The 

conserved currents of this theory are asymmetric, a feature first noted by Witten in 
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[94]. They are given by J = Jata "' ogg- 1 and J = Jata "' g- 1[Jg and satisfy the 

OPE 
a b kbab L. Jc(w) 

J ( Z) J ( W) rv ( )2 + 1}abc ( ) · z-w z-w 
c 

(4.2.48) 

Expanding Ja in terms of modes, using the Laurent expansion 

JU(z) = L z-n-1 J~ ( 4.2.49) 
nEil 

and using a similar method to the Virasoro case, as described in section 2.2, these 

modes can be shown to satisfy the commutation relations of the gk affine Lie algebra 

[J~, J,~] = L ifabcJ~+m + kbabbn+m,O · ( 4.2.50) 
c 

Another copy of this relation holds for the J~ modes and [ J~, J~] = 0 so the two 

algebras are independent. 

Conformal invariance of this theory can be shown by constructing the energy

momentum tensor with the appropriate algebraic properties using the Sugawara con

struction. This was the culmination of work done by several groups, but details and 

further references can be found, for example, in the reviews [5], [92]. Classically, 

the energy-momentrum tensor of this theory has the form (1/2k) La JaJa. For the 

quantum theory, the currents must be normal ordered to avoid a singularity so T(z) 

can be taken to be 

T ( z) = I L : Jar : ( z) . ( 4.2.51) 
a 

The constant, /, cannot be fixed from the classical theory as it is renormalised by 

quantum effects since the currents are not free fields. Instead it can be fixed by 

requiring that the OPE ofT with itself has the form 

T(z)T(w) = c/2 + 2T(w) + 8T(w) , 
(z-w) 4 (z-w) 2 (z-w) 

( 4.2.52) 

or by requiring Ja to be a Virasoro primary field of dimension 1. The result is that 

1 
i= -

2(k +h) 
( 4.2.53) 

where k is the level and h the dual Coxeter number. With this prefactor, the energy 

momentum tensor ( 4.2.51) satisfies the OPE ( 4.2.52) with central charge 

kdimg 
c = --------:o-

k+h 
(4.2.54) 
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T(z) can be written in terms of Virasoro modes 

1 
Ln = . - L L: J:nJ~-m: 

2(k +h) a m . 
( 4.2.55) 

where the dots represent normal ordering of the modes: J~ and J~-m commute if 

n =f 0 so the ordering doesn't matter, but if n = 0 the term with the larger subindex 

must be placed to the right. The Ln modes satisfy the Virasoro algebra and from the 

OPE of T(z) with Ja(z), which is the usual OPE ofT with a Virasoro primary field 

of dimension 1 
a Ja ( w) a Ja ( w) 

T(z)J(w)=( )2+( )+ ... , z-w z-w 
( 4.2.56) 

the commutation relation between the Ln and J~ modes can be found. The complete 

affine Lie and Virasoro algebra, written here for the holomorphic sector only, is then 

[Ln,Lm] 

[Ln,J~] 

[J~, J~] 

(n- rn)Ln+m + 
1
c
2

n(n2
- 1)bn+m,o 

-rnJ~+m 

L ifabcJ~+m + knbabbn+m,O. 
c 

(4.2.57) 

Equivalent relations hold for the antiholomorphic sector. Since J0 commutes with 

the Virasoro generators, in particular with L 0 , the finite Lie algebra g is a symmetry 

algebra of the theory. This is not the case for the affine algebra g, which is the 

spectrum generating algebra. 

A WZW primary field, ¢ >..,11 , will transform covariantly with respect to the ,\ 

representation of g in the holomorphic sector, and the !L representation in the anti

holomorphic sector. It satisfies the OPE 

JU(z)¢>..Jl(w, w) 
-t).¢>..Jl ( w, w) 

z-w 
¢>..Jl(w, w)t~ 

z-w 

(4.2.58) 

( 4.2.59) 

with t). the matrix t 0 in the ,\ representation. Focusing on the holomorphic sector 

only, a state 1¢>..) can be associated to the field¢>.. by ¢>..(0)10) = 1¢>..). Expanding the 

currents in terms of modes Ja(z) = Ln(z- w)-n-IJ~(w), from the OPE above it is 

clear that the state 1¢>..) must satisfy 

0 n > 0. 

( 4.2.60) 

( 4.2.61) 
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These WZW primary fields are in fact also Virasoro primary. This can be seen by 

noticing that for Ln with n > 0, the right most factor I! of ( 4.2.55) has m > 0 so 

Ln I<PA) = 0 for n > 0. (4.2.62) 

L0 I¢A) also simplifies as only the zero modes 18 contribute 

(4.2.63) 

This is proportional to the quadratic Casimir operator of g, Q = La Ja ]a. Evaluated 

on a highest-weight state 1-X) 

QI-X) = (A, A+ 2p)I-X) ( 4.2.64) 

where p is the weight where all Dynkin labels are unity, known as the Weyl vector. 

Q commutes with all generators of g so its eigenvalue will be the same on all states 

of the representation. Therefore, one can associate a conformal weight hA to I<PA), 

(4.2.65) 

where 
h = (A,A+2p) 

A 2(k +h) . 
( 4.2.66) 

From (4.2.62) and (4.2.65) <PAis clearly a Virasoro primary field, however the converse 

is not necessarily true; a Virasoro primary field can be a WZW descendant. All other 

states in the theory are of the form Jr:..n
1 
J~n2 •• • I¢A) with n 1, n 2 positive integers. The 

primary fields correspond to the highest weights of integrable representations of the 

affine Lie algebra. Since there are a finite number of such weights for a fixed positive 

integer k this means that there are a finite number of primary fields in the lJk WZW 

model. Of course, these fields are primary with respect to the affine algebra, but 

there are an infinite number of Virasoro primary fields. Theories which are minimal 

with respect to either the Virasoro algebra or an extended symmetry algebra, are 

often called rational conformal fields theories, or RCFTs. 

By analogy with the Virasoro case, the character of the integrable representation 

of i:\) is defined as 

X~ ( T) = Tr~e2niT(L0 -cj24) ( 4.2.67) 
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with £ 0 given by (4.2.55) and c by (4.2.54). States at level n in the module of i:\) 
have dimension h;. + n, with h;. given in ( 4.2.66), so the character can be rewritten 

as 

(4.2.68) 
n 

where d(n) is the number of states at level n. Using the formula 

12lpl 2 
= h dim g, (4.2.69) 

known as the 'Freudenthal-de Vries strange formula', it is easy to check that 

h;. - c/24 = m;. (4.2.70) 

therefore ( 4.2.68) is just the specialised, and normalised, character of the irreducible 

highest weight representation of the affine Lie algebra gkl from ( 4.2.41 ). This iden

tification shows that the characters of the WZW primary fields transform into each 

other under the modular transformations with the modular S and T matrices given 

in (4.2.45) and (4.2.44) respectively. To obtain physical spectra, a modular invariant 

partition function must be constructed. This will not be discussed in detail here, but 

like in the Virasoro case, the diagonal theory, in which all primary fields transform 

with respect to the same representation in the holomorphic and antiholomorphic sec

tors, with each integrable representation appearing exactly once is modular invariant. 

All of these results can be extended to models invariant under tensor products of 

Lie groups G 1 ® G2 ® ... , for which the spectrum generating algebra is the direct sum 

of the corresponding affine algebras (gi)k1 EB (g2)k2 EB .... The Sugawara construction 

can be used to find an energy-momentum tensor for each of these algebras and the 

total energy-momentum tensor is then the sum of these. The central charges of these 

components also sum to the total central charge c. 

Of course, these models will all have c > 1, although all unitary RCFTs, including 

the Virasoro minimal models, can be built from WZW models with integer k. This 

is done using the coset construction, where a coset is a quotient of direct sums of 

WZW models. 

To see how this works, consider g and let p be a subalgebra of g. The Sugawara 

construction can be applied to both g and p to obtain Virasoro generators £9 and £P 

respectively. In general, they will have different prefactors and different c numbers, 
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but they will satisfy the commutation relations 

Subtracting gives 

[L!, J~] 

[L:'n, J~] 

J a 
-n m+n 

-nl~.+n 

[L~n- L:'n, J~] = 0 

a= 1, ... , dimg 

a = 1, ... , dim p . 

a= 1, ... ,dimp 

and a consequence of this is that 

[L!- L:'n, L~] = 0. 

Defining L (gfp) = Lg - £P leads to 
m m m 

so L~/P) satisfies the Virasoro algebra with central charge 

( I ) ~ kg dim g _ kp dim p 
cgp- - -· 

kg+ hg kp + hp 

(4.2.71) 

( 4.2. 72) 

(4.2.73) 

(4.2.74) 

(4.2.75) 

( 4.2.76) 

The cosets of interest here are of the form g1 x gifg2 where Qk is the affine algebra 

associated to one of the simply-laced algebras A, D or E. The central charge of these 

theories simplifies to 

. ( 2 2 ) 2rg 
c = dim 9 1 + h - 2 + h = h + 2 · ( 4.2.77) 

In general, to extract the gjp coset conformal theory from the g WZW model, the 

representations, ji, of g must be decomposed into a direct sum of representations, v, 
ofp: 

(4.2.78) 

This decomposition corresponds to the character identity 

(4.2.79) 

where Xii and Xv are the characters of the g and p representations ji and D respectively 

and the branching function, bp,p( T), is the character of the coset theory. Let II denote 

the projection matrix giving the explicit projection of every weight of g onto a weight 

of p. Clearly for a coset character to be non zero 

II11- v E IIQ ( 4.2.80) 
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must be satisfied, where Q is the root lattice of g. For the diagonal cosets of interest 

here, since II ( Q EB Q) = Q this selection rule is particularly simple: 

1-L+v-pEQ ( 4.2.81) 

where /-L, v and p are weights of g. 

The group of outer automorphisms of g, 0 (g), permutes the fundamental weights 

in such a way as to leave the extended Dynkin diagram invariant. Each fundamental 

weight is mapped to another with the same mark and comark so the level of the 

weight remains the same. The action of the group on an arbitrary weight, written 

in terms of the Dynkin labels, for the ADE theories is given in table 4.2, taken from 

[5]. The action of an element, A E O(g), on a modular S-matrix element of gat some 

g O(g) Action of the O(g) generators 

Ar Zr+1 a[no, nl, ... 'nr-1, nr] = [nr, no, ... ' nr-2, nr-1] 

Dr=2l Z2 x Z2 a[no, n1, ... 'nr-1, nr] = [n1, no, n2, ... 'nr, nr-1] 

a[no, n1, ... 'nr-1, nr] = [nn nr-1, nr-2, ... 'n1, no] 

Dr=21+1 z4 a[no, n1, ... 'nr-1, nr] = [nr-1, nTl nr-2, ... 'n1, no] 

E6 z3 a[no, n 1, ny, n2, n 3, n3, n4] = [n1, ny, no, n3, n 2, n3, n4] 

E7 z2 a[n0 , n 1, ... , n 7] = [n1, n0 , n4 , n3, n2, n6, n5 , n7] 

Table 4.2: Outer automorphisms of ADE affine Lie algebras, from [5] 

level l is 

( 4.2.82) 

More information on this topic can be found, for example, in [5]. 

Coset fields for these diagonal theories are specified by triples {/L, v; p} of g 

weights at levels 1,1 and 2 and the modular S-matrix has the form 

( 4.2.83) 

Under the action of O(g), given in ( 4.2.82), it transforms as 

( 4.2.84) 

S{-- -}{-' _, _,} JL,V;p JL ,V ;p 
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since J..L1 + v' - p' E Q [95]. This suggests that S is a degenerate matrix, which 

cannot be the case since it represents a modular transformation. This degeneracy 

must therefore be removed by identifying the fields 

{A/L, Av; Ap} = {Jl,, v; p} VA E O(g). ( 4.2.85) 

For these diagonal cosets, the orbit of every element A of O(g) has the same order, N, 

which is simply the order of the global symmetry group of the model. With this field 

identification, every field in the theory will appear with multiplicity N. To remedy 

this, the partition function must be divided by this multiplicity, which has the effect 

of introducing N into the coset modular S-matrix [96]: 

(1) (1) (2) S{, v·p-}{"' v'·-p'} = N s __ ,s __ ,s __ ,_ 
,_, , .- , , ILIL vv PP ( 4.2.86) 

More information on field identifications can be found, for example, in [97]. 

4.3 Minimal reflection factors for purely elastic 

scattering theories 

Returning now to the particle description of the purely elastic scattering theories, it is 

useful to note that a common basis for the conjecturing of bulk scattering amplitudes 

is a 'minimality hypothesis', that in the absence of other requirements one should 

look for solutions of the constraints with the smallest possible number of poles and 

zeros. In this section this principle is used to find sets of boundary amplitudes, one 

for each purely elastic 8-matrix of type A, D or E. The amplitudes given below were 

at first conjectured [98] as a natural generalisation of the minimal versions of the Ar 

affine Toda field theory amplitudes found in [99, 100]. The reasoning behind these 

conjectures will be explained shortly. More recently, Fateev [101] proposed a set of 

reflection factors for the affine Toda. field theories. These were in integral form, and 

not all matrix elements were given. However, modulo some overall signs and small 

typos, the coupling-independent parts of Fa.teev's conjectures match those presented 

here. (This has also been found by Zambon [102], who obtained equivalent formulae 

to those recorded below taking Fateev's integral formulae as a. starting point.) 

Recall from section 3.3, the unita.rity condition, for a purely elastic scattering 
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theory, is 

( 4.3.1) 

and the crossing-unitarity condition is 

(4.3.2) 

Whenever a bulk three-point coupling cabc is non-zero there IS also a bootstrap 

constraint 

(4.3.3) 

Unitarity and crossing-unitarity together imply that the reflection factors must be 27ri 

periodic; unitarity then requires that they be products of the blocks ( x) introduced 

in section 4.1: 
sinh (!l + inx) 

(x) = 2 2h 
· h ( fJ inx) ' Sill 2- 2h 

( 4.3.4) 

which appear in the ADE S-matrix elements as 

Sab = II {X} , {X} = (X - 1) (X + 1) . (4.3.5) 
xEAab 

The crossing-unitarity constraint is then key for the analysis of minimality. Each pole 

or zero of Baa (2e) on the right hand side of ( 4.3.2) must be present in one or other 

of the factors on the left hand side of that equation. This sets a lower bound on the 

number of poles and zeros for the reflection factor Ra (e). 

To exploit this observation, it is convenient to work at the level of the larger 

blocks { x} = ( x - 1) ( x + 1), the basic units for the bulk bootstrap equations [83, 85]. 

Define two complementary 'square roots' of these blocks as 

(4.3.6) 

which have the basic properties 

(x)(e) = (i)(e + i1r) (4.3.7) 

and 

(x)(e) (i)(e) = {x} (2e). (4.3.8) 

The crossing-unitarity equation can then be solved, in a minimal fashion, by any 

product 

(4.3.9) 
xEAaa 
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where each factor fx can be freely chosen to be (x) or (x), modulo one subtlety: 

since (0) = 1, minimality requires that any factor !I be taken to be (1) rather than 

(I). In fact there is always exactly one such factor for the diagonalS-matrix elements 

relevant here [86].* Pictorially these 'square root' blocks are shown in figure 4.3. Each 

i !t(2h -x) 

h 
{x)(8) 

0 i1tx 
-- ilt 2m 

h 

i !t(2h -x)_ 

' 1-1 ' 2h 
{x)(28) r---. -· -,-~~--1 

lltX L~ . 
0 Th lit 

:X\ ( 8) ~---"-~ '-'---". ·-·--t---,-~~--~--------1 

0 ilt 

<X: ( 8) 1--~;-:] __ : -~--i 
0 ~ 

Figure 4.3: The 'square root' blocks 

block {X}( e) has a pole at e == in( X± 1) I h, depicted in figure 4.3 by the edges of the 

block sitting above the horizontal (e) axis. Each of these poles has a corresponding 

zero (outside the physical strip); the positions of these zeros are given by the edges 

of the block sitting below the axis. Figure 4.3 also shows how the poles and zeros of 

each block of S(2e), {x}(2e), are split between the two square roots (x) and (i). 

There remains the constraint imposed by the bootstrap equations (4.3.3). To 

treat these it is necessary to know how the blocks (x)(e) and (x)(e) transform under 

general shifts in e. As in [85, 86], these shifts are best discussed by defining 

( e inx) (x)+ (e)= sinh 2 + 
2

h ( 4.3.10) 

and then 

(4.3.11) 

*One could also take (x) = (x2 1) (x!1 ), (x) = eh-2x-l)-
1 

eh-2x+ 1 r
1 

throughout, but this 

would break the pattern previously seen for the Ar theories, and turns out not to fit with the 

g-function calculations later. 
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so that (x) = (x)+/( -x )+, (x) = (x)+/ ( ~)+ and (x) = (x)+/ ( -x)+. Once a 

conjectured set of reflection factors ( 4.3.9) has been decomposed into these blocks, it 

is straightforward to implement the boundary bootstrap equations ( 4.3.3) using the 

properties 

( 4.3.12) 

It is very easy, using the block diagrams shown in figure 4.3, to check the bootstrap 

equations. As an example this is done in figure 4.4 for the simple case of A2 . Here 

the Coxeter number h = 3, the fusing angles Uf1 = Ui2 = 2;1r, Su (B) = 5 22 (0) = {1} 

and R 1 (B) = R 2 (B) = (1). Recall that each vertical edge of every block denotes the 

position of a pole (when the edge is above the axis) or a zero (when it is below the 

axis). Therefore, when multiplying two blocks at the same position, the result is to 

add the areas of the blocks (with a double height edge representing a double pole 

or zero), and if two blocks are sitting either side of the horizontal axis at the same 

position, their areas then cancel. This can be seen in figure 4.4. 

R1(8) PI v.l 
0 11[ 

R1 (8 +i77 3 > I ~I 
0~ in 

R1 (8 -i77 3 ) I VI~ 
0 I1t 

s11 c 28) p u 0 in 

R2 (8) ~I v.l I 

0 11[ 

Figure 4.4: The bootstrap equation for A2 

For the ADE theories it turns out that the boundary bootstrap equations can all 

be satisfied by minimal conjectures of the form ( 4.3. 9), and that the choice of blocks 

is then fixed uniquely. (From the point of view of the bootstrap equations alone, an 

overall swap between (x) and (x) is possible, but the requirement that h = (1) fixes 

even this ambiguity.) The final answers are recorded below. 
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The reflection factors for this case were given in [99]. In the current notation they 

are 
2a-l 

Ra = II (x). 
x=l 

x odd 

The reflection factors, Ra, for a = 1, ... , r - 2 are 

2a-l 2a-1 2a-5 

Ra = II ( x) II ( h - x) II ( h ~ 2) , for a odd 
x=l x=l x=l 

x odd step 4 step 4 

2a-l 2a-3 

Ra IT (x) IT (~)(h- x- 2), for a even, 
x=l x=l 

x odd step 4 

while for a= r- 1 and r 

2r-5 

Rr = II \x) , for r odd 
x=l 

step 4 

2r-3 

Rr-l Rr = II (x), for r even, 
x=l 

step 4 

R1 = (1)(7) 

\1) (5) (7) (li) 

R3 R3 = (1) (3)\5)\7) (7) (9) 

R4 (1) (3) 2 (5) 2 (5) (7) 2 (7)(9) (9) \11) 

( 4.3.13) 

(4.3.14) 

(4.3.15) 

( 4.3.16) 
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Rl - (1)(9)(17) 

R2 (1)(7)(11)(l7) 

R3 - (1)(5)(7)(9)(fi)(13)(17) 

R4 (1)(3)(7)(9)(9)(11)(15)(17) (4.3.17) 

Rs - (1)(3)(5)(7)(7)(9) 2(11)(fi)(13)(i5)(17) 

R6 = (1)(3)(5) 2(7)(7)(9) 2 (9)(11)(fi)(13) 2(i5)(17) 

R7 - (1)(3) 2(5) 2(5)(7) 3 (7)(9) 2(9) 2(11) 3 (fi)(13)(f3) 2(15) 2 (i7) 

Es 

Rl (1) (11) (19) (29) 

R2 (1)(7)(11)(13)(17)(19)(23)(29) 

R3 (1)(3)(9)(11)(fi)(13)(17)(19)(i9)(21)(~7)(29) 

R4 - (1)(5)(7)(9)(11)(fi)(13)(15)(l5)(17)(19)(f9)(21)(23)(25)(29) 

Rs (1)(3)(5)(7)(9)(9)(11) 2(fi)(13)(i3)(15) 2(17)(i7)(19) 2(i9)(21)(2i) 

(23) (25) (27) (29) ( 4.3.18) 

R6 = (1)(3)(5)(7)(7)(9) 2(11) 2(fi)(13) 2 (i3)(15)(i5)(17) 2(l7)(19)(i9) 2 

(21) 2(23)(23)(25)(27)(29) 

R7 - (1)(3)(5) 2(7) 2(7)(9) 2(9)(11) 2(fi) 2 (13) 3(f3)(15) 2(i5) 2(17)3 (i7)(19) 2 

(19) 2 (21) 2(21)(23)(23) 2(25) 2(27)(29) 

Rs - (1)(3)2 (5) 2 (5)(7)3 (7)(9)3 (9) 2 (11)4 (li) 2(13)3 (l3) 3 (15) 4 (i5) 2 (17) 3 (f7) 3 

(19) 4 (19) 2(21) 2(21) 3 (23) 3 (23)(25)(25) 2(27) 2(29) 

For the T series the story is different: it is not possible to satisfy the boundary 

bootstrap equations with a conjecture of the form ( 4.3.9). This means that the mini

mal reflection factors for these models are forced by the bootstrap to have extra poles 

and zeros beyond those required by crossing-unitarity alone. The general proposal 
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will be given in eq. (4.5.4) below, but the situation can be understood using the 

boundary T1 , or Lee-Yang, model: the minimal reflection factor found in [78] for the 

single particle in this model bouncing off the I].) boundary is 

( 4.3.19) 

The simpler function (~)(~)- 1 would have been enough to satisfy crossing-unitarity, 

but then the boundary bootstrap would not have held, and so (4.3.19) really is a 

minimal solution. This observation fits nicely with the g-function calculations to 

be reported later: had the minimal reflection factors for the Tr theories fallen into 

the pattern seen for other models, there would have been a mismatch between the 

predicted UV values of the g-functions and the known values from conformal field 

theory. 

4.4 One-parameter families of reflection factors 

The minimal reflection factors introduced in the last section have no free parameters. 

However, combined perturbations of a boundary conformal field theory by relevant 

bulk and boundary operators involve a dimensionless quantity - the ratio of the 

induced bulk and boundary scales- on which the reflection factors would be expected 

to depend. To describe such situations, the minimality hypothesis must be dropped 

and the conjectures extended. 

A first observation, rephrasing that of [75], is that given any two solutions Ra (B) 

and R~ (B) of the reflection unitarity, crossing-unitarity and bootstrap relations ( 4.3.1), 

(4.3.2) and (4.3.3), their ratios Za(B) = Ra(B)/R~(B) automatically solve one-index 

versions of the bulk unitarity, crossing and bootstrap equations (2.4.18), (2.4.19) and 

(2.4.24): 

Za(B)Za(-B) = 1, Za(B) = Za(i7r- B), 

Zc(B) = Za(B- iU~JZb(B + iU:J . 

(4.4.1) 

( 4.4.2) 

The minimal reflection factors Ra (B) can therefore be used as multiplicative 'seeds' for 

more general conjectures R~ (B) = Ra (B)/ Za (B), with the parameter-dependent parts 

Za(B)- 1 constrained via (4.4.1) and (4.4.2). An immediate solution is zld)(B) = Sda(B) 

for any (fixed) particle type d in the theory, where the ket symbol is used here to 
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indicate that the label ld) might ultimately refer to one of the possible boundary 

states of the theory. However, this does not yet introduce a parameter. Noting that 

a symmetrical shift in e preserves all the relevant equations, one possibility is to take 

(4.4.3) 

with C at this stage arbitrary. This is indeed the solution adopted by the boundary 

scaling Lee-Yang example studied in [78]. This model is the r = 1 member of the 

Tr series described earlier, and corresponds to the perturbation of the non-unitary 

minimal model M 25 by its only relevant bulk operator, cp, of conformal dimensions 

fl'P = fl'P = -i· The minimal model has two conformally-invariant boundary con

ditions which were labelled I]_) and I <I>) in [78]. The I]_) boundary has no relevant 

boundary fields, and has a minimal reflection factor, given by (4.3.19) above. On the 

other hand, the I<I>) boundary has one relevant boundary field, denoted by ¢, and 

gives rise to a one-parameter family of reflection factors 

(4.4.4) 

The factor zlb) (B) has exactly the form mentioned above: 

zlb)(e) = s(e + i~(b+3))S(e- i~(b+3)) (4.4.5) 

where S( B) is the bulkS-matrix, and the parameter b can be related to the dimension

less ratio J.L2 
/).. of the bulk and boundary couplings ).. and fL [78, 79]. (Since there is 

only one particle type in the Lee-Yang model, the indices a, d and so on are omitted. 

The notation here has also been changed slightly from that of [78] to avoid confusing 

the parameter b with a particle label.) t 

As an initial attempt to extend ( 4.4.4) to the remaining ADET theories one could 

therefore try 

( 4.4.6) 

with z~d,c\e) as m (4.4.3). This manoeuvre certainly generates mathematically

consistent sets of reflection amplitudes, but in the more general cases it is not the 

most economical choice. Consider instead the functions obtained by replacing the 

tThere are also boundary-changing operators, but these were not considered in [78, 79]. 
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blocks {x} in (4.1.3) by the simpler blocks (x) [45]: 

s~ = IT (x) . ( 4.4. 7) 
xEAab 

For the Lee-Yang model, SF(()) coincides with S(O), but for other theories it has 

fewer poles and zeros. The bootstrap constraints are only satisfied up to signs, but 

if SF is used to define a function zid,C) as 

( 4.4.8) 

then these signs cancel, and so ( 4.4.8) provides a more "minimal" generalisation of the 

family of Lee-Yang reflection factors which nevertheless preserves all of its desirable 

properties. Setting d equal to the lightest particle in the theory generally gives the 

family with the smallest number of additional poles and zeros, but, as will be seen 

later, all cases have a role to play. 

The normalisation of the shift was changed in passing from ( 4.4.3) to ( 4.4.8); this 

is convenient because, as a consequence of the property 

(x- C)(O) x (x + C)(O) = (x)(() + i*C) x (x)(()- i*C), (4.4.9) 

zld,C) simplifies to 

zld,C) = IT (x- C) (x +C) . (4.4.10) 
xEAad 

The factors (zid,C))-1 therefore coincide with the coupling-constant dependent parts 

of the affine Toda field theory S-matrices of [83, 32], with C related to the parameter 

B of [83] by C = 1- B. 

4.5 Boundary Tr theories as reductions of bound

ary sine-Gordon 

The reflection factors presented so far are only conjectures, and no evidence has been 

given linking them to any physically-realised boundary conditions. The best signal in 

this respect will come from the exact g-function calculations to be reported in later 

sections. However, for the Tr theories, alternative support for the general scheme 

comes from an interesting relation with the reflection factors of the sine-Gordon 

model. 
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In the bulk, the Tr theories can be found as particularly-simple quantum group 

reductions of the sine-Gordon model at certain values of the coupling, in which the 

soliton and antisoliton states are deleted leaving only the breathers [89]. Quantum 

group reduction in the presence of boundaries has yet to be fully understood, but the 

simplifications of the Tr cases allow extra progress to be made. This generalises the 

analysis of [78] for T1 , the Lee-Yang model, but has some new features. 

The boundary S-matrix for the sine-Gordon solitons was found by Ghoshal and 

Zamolodchikov in [72], and extended to the breathers by Ghoshal in [103]. To match 

the notation used above for the ADE theories, the sine-Gordon bulk coupling constant 

f3 is traded for 
167r 

h = f32 - 2. (4.5.1) 

Ghoshal and Zamolodchikov expressed their matrix solution to the boundary Yang

Baxter equation for the sine-Gordon modelt in terms of two parameters E, and k. 

However for the scalar part (which is the whole reflection factor for the breathers) 

they found it more convenient to use TJ and fJ, related to E, and k by 

1 
cos TJ cosh fJ = - k cos E, , 

1 
cos2 

TJ + cosh2 fJ = 1 + k2 . (4.5.2) 

Ghoshal-Zamolodchikov's reflection factor for the ath breather on the !TJ, fJ) boundary 

can then be written as 

(4.5.3) 

where 
R(a) = (~)(a+ h) arr-

1 
(l) (l +h) 

o (a+3h) (l+ 3h)2 
2 1=1 2 

(4.5.4) 

is the boundary-parameter-independent part, and 

(4.5.5) 

with 
a-1 ( 2v h l) 

s(a) (v e) = II -;;:- - 2 + 
' (2v +f.!+ [) 

l=l-a 1r 2 

(4.5.6) 

step 2 

contains the dependence on TJ and fJ. In these formulae the blocks ( x) are the same as 

those defined in (4.1.2) for the minimal ADE theories, with h now given by (4.5.1). 

t also found by de Vega and Gonzalez Ruiz [104] 
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Now for the quantum group reduction. In the bulk, suppose that {32 is such that 

h = 2r + 1, (4.5.7) 

At these values of the coupling, Smirnov has shown [89] that a consistent scattering 

theory can be obtained by removing all the solitonic states, leaving r breathers with 

masses Ma = s~~1(~a~h~) .A11 . The scattering of these breathers is then given by the Tr 

S-matrix (4.1.5). In order to explain all poles without recourse to the solitons, extra 

three-point couplings must be introduced, some of which are necessarily imaginary, 

consistent with the Tr models being perturbations of nonunitary conformal field theo

ries. In the presence of a boundary, these extra couplings give rise to extra boundary 

bootstrap equations, which further constrain the boundary reflection factors and im

pose a relation between the parameters 'fl and i). This can be seen by a direct analysis 

of the boundary bootstrap equations but it is more interesting to take another route, 

as follows. 

First recall the observation of [78], that the reflection factors for the boundary 

Lee-Yang model match solutions of the boundary Yang-Baxter equation for the sine

Gordon model at 

~ ---+ ioo. (4.5.8) 

The Lee-Yang case corresponds to r = 1, h = 3, but here it is supposed that the 

same constraint should hold more generally (see also [76]). The condition must be 

translated into the ( 'fl, iJ) parametrisation. One degree of freedom can be retained by 

allowing k to tend to infinity as the limit ( 4.5.8) is taken. The relations ( 4.5.2) then 

become 

cos 'fl cosh i) = A , cos2 T/ + cosh2 
i) = 1 . (4.5.9) 

The constant A can be tuned to any value by taking ~ and k to infinity suitably, and 

so the first equation in (4.5.9) is not a constraint; solving the second for iiJ, 

(4.5.10) 

(The shift by r is included for later convenience.) This appears to give a count

able infinity of one-parameter families of reflection factors, but this is not so: the 

blocks (x) in (4.5.5) and (4.5.6) depend on the boundary parameters only through 

the combination 
2iiJ 27] 
- = - + 2( r-d) + 1 . 

7r 7r 
( 4.5.11) 
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Since ( x + 2h) = ( x), the reflection factors for d a.re therefore the sa.me a.s those for 

d +h. In addition, the freedom to redefine the parameter 7J gives a.n extra. inva.ria.nce 

of the one-parameter families under d ----t 2r - d. The full set of options is therefore 

realised by 

d = 0, 1, ... r. (4.5.12) 

Note a.lso tha.t Ria) ( 0), the coupling-dependent pa.rt of the reflection factor, is trivial 

if d = 0. Thus the limit ( 4.5.8) corresponds to r one-parameter families of breather 

reflection factors, a.nd one 'isolated' ca.se. This matches the counting of conformal 

boundary conditions (the set of bulk Virasoro primary fields [67]) for the M 2,2r+3 

minimal models, a.nd the fa.ct tha.t of these boundary conditions, a.ll but one ha.ve the 

relevant ¢13 boundary operator in their spectra.. 

To see how this fits in with the ideas presented earlier, 77 is swapped for C, defined 

by 
2

7] = d - !!_ + c . 
7r 2 

( 4.5.13) 

Then, starting from ( 4.5.5) a.nd relabelling, 

R(a) -
1 -

a-1 

IT (-h+d+l+C) (-d+l+C) 

(d + l +c) (h- d + l +c) 
1=1-a 
step 2 

a-1 

II ( -d- z- c) ( -d -z +c) ( -h + d + z +c) ( -h + d + z- c) 
1=1-a 
step 2 

a+d-1 

IT ( -z- c) ( -z +c) ( -h + z +c) ( -h + z- c) . 
1=1-a+d 

step 2 

(4.5.14) 

Since the first a - d terms in the la.st product cancel if a > d, it is easily seen tha.t 

Ria) coincides with (zld,C))- 1
, a.s expressed by (4.4.10), for the Tr S-ma.trix (4.1.5). 

4.6 Some aspects of the off-critical g-functions 

The ma.in tool of use here in linking reflection factors to specific boundary conditions 

will be the formula. for a.n exact off-critical g-function introduced in [4]. This wa.s 

described in section 3.4 but further properties, a.nd some modifications which will be 

relevant later, are discussed here. 
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4.6.1 The exact g-function for diagonal scattering theories 

In section 3.4, considerations of the infrared (large-l) asymptotics and a conjectured 

resummation led to the proposal of a general formula for the exact g-function of a 

purely elastic scattering theory. However in section 4.6.2 below, it is argued that the 

result given in (3.4. 76) needs to be modified by the introduction of a simple symmetry 

factor whenever there is coexistence of vacua at infinite volume. This happens in the 

low-temperature phases of the E6 , E7 , A and D models. The more-general result is 

where Cra) is the symmetry factor to be discussed shortly, and the functions ¢':) (B) 

and rPab( B) are related to the bulk and boundary scattering amplitudes Sab( B) and 

R1a) (B), as before, by 

- !:.._ .!}__ ln Ria) (B) 
7r d(} a ' 

( 4.6.2) 

i d 
---ln S b(O). 

27r d(} a 
( 4.6.3) 

The boundary-condition-independent piece ~( l) is exactly that given in (3.4. 76): 

( 4.6.4) 

with Bn+l = 01, an+l = a 1 . Recall that the functions Ea(B), called pseudoenergies, 

solve the bulk TBA equations 

rg 

Ea (B) = A1aL cosh(} - ~ 1 dB' rPab( 0 - 0') Lb( 0') , a= 1, . .. ,Tg, ( 4.6.5) 

where La (B) = ln( 1 + e-Ea (IJ)), and the ground-state energy of the theory on a circle 

of circumference L is given in terms of these pseudoenergies by 

( 4.6.6) 

where £ L lv/2 is the bulk contribution to the energy. 
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As mentioned in section 3.4, the formula ( 4.6.1) has been checked in detail, but 

only for the r9 = 1, qll) = 1 case corresponding to the Lee-Yang model [4]. The results 

below will confirm that it holds in more general cases, provided qn) is appropriately 

chosen. 

4.6.2 Models with internal symmetries 

The scaling Lee-Yang model, on which the analysis of (4] was mostly concentrated, is 

a massive integrable quantum field theory with fully diagonal scattering and a single 

vacuum. However many models lack one or both these properties. In this section 

this analysis will be extended to models possessing, in infinite volume, N equivalent 

vacua but still described by purely elastic scattering theories§. For the ADE-related 

theories the N equivalent vacua are related by a global symmetry Z. When these 

systems are in their low-temperature phases, the original formula for g(l), as given 

in (3.4. 76), should be corrected slightly, by including a 'symmetry factor' qn). 

Low-temperature phases are common features of two dimensional magnetic spin 

systems below their critical temperatures. A discrete symmetry Z of the Hamiltonian 

H is spontaneously broken, and a unique ground state is singled out from a multiplet 

of equivalent degenerate vacua. This contrasts with the high-temperature phase, 

where the ground state is Z~invariant. 

The prototype of two-dimensional spin systems is the Ising model, so this case will 

be treated first. The Ising Hamiltonian for zero external magnetic field is invariant 

under a global spin reversal transformation (Z = 1:02), and at low temperatures T < Tc 

this symmetry is spontaneously broken and there is a doublet {I+), 1-)} of vacuum 

states transforming into each other under a global spin-flip: 

I±) _, I=F). (4.6.7) 

The Z2 symmetry of H is preserved under renormalisation and it also characterises 

the continuum field theory version of the model: in the low-temperature phase the 

bulk field theory has two degenerate vacua {I+), 1-)} with excitations, the massive 

§Integrable models with non-equivalent vacua are typically associated to non-diagonal scattering 

like, for example, the ¢ 13 perturbations of the minimal Mp.q models [105]. 
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kinks K[+-J(B), K[-+J(B), corresponding to field configurations interpolating between 

these vacua. 

In infinite volume the ground state is either I+) or 1-), and the transition from 

I+) to 1-) (or vice-versa) can only happen in an infinite interval of time. On the 

other hand in a finite volume V, tunnelling is allowed: a kink with finite speed can 

span the whole volume segment in a finite time interval. The interest here is in the 

scaling limit of the Ising model on a finite cylinder and the open-segment direction of 

length R is taken as the space coordinate. Time is then periodic with period L. If the 

boundary conditions are taken to be fixed, of type +, at both ends of the segment, 

then the only multi-particle states which can propagate have an even number of kinks, 

of the form 

(4.6.8) 

For R large, the rapidities { e J} are quantised according to the Bet he ansatz equations 

rsinhBJ- ilnRI+)(BJ) = 1rj, (r = l\1R, j = 1,2, ... ), (4.6.9) 

where Rl+) (B) is the amplitude describing the scattering of particles off a wall with 

fixed boundary conditions of type + . 
At low temperatures Z(+l+) [L, R] therefore receives contributions only from states 

with an even number of particles. It is conveniently written in the form (see for 

example [106]): 

where 

z~~I+)[L,R] = e-LE~trip(M,R) II (1 + (-1)be-/cosh0j)' (l = l\1L)' 
j>O 

( 4.6.10) 

(4.6.11) 

E~trip(l\1, R) is the ground-state energy, and the set {OJ} is quantised by (4.6.9). This 

can be seen by expanding the product in ( 4.6.11) and noticing that the contributions 

from states with an even number of particles and those from states with an odd 

number of particles each appear with the coefficients ( -1) 2nb and ( -1)(2n+l)b, n E Z 

respectively. The contribution from states with an odd number of particles therefore 

cancels from the combination given in (4.6.10), leaving only that from states with an 

even number of particles. In order to extract the subleading contributions to Z(+l+) , 

as in [4] set 
(0) [ (1) J z [L R] = l lnZ(+I+) L,R] + l lnZ(+I+)[L,R 

(+I+) ' 2e 2e ' (4.6.12) 
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and in the limit R-----+ oo use Newton's approximation to transform sums into integrals. 

The result is 

(b) [ l ln Z(+l+) L, R ~ 1 d() (;cosh(B) + ¢1+)(8) _ b({j)) ln(1 + (-1)be-lcosh8) 

2lngr!\U)- RE~irc!e,b(M, L), (b = 0, 1). (4.6.13) 

From ( 4.6.13) it follows that at finite values of l as R -----+ oo 

(0) [ l (1) [ l ln Z(+l+) L, R - ln Z(+l+) L, R -----+ +oo (4.6.14) 

and therefore 

( (l))2 -RE{Jircle(M,L) ""~z(O) [L R] 
m+) e 2 (+I+) ' 

.! ( (0) (l)) 2 
-RE{Jircle(M,L) 

2 gl+) e ' ( 4.6.15) 

where E8ircie(.M, L) = E~ircle,o(M, L) is the ground state energy for the system with 

periodic boundary conditions. 

Notice that Z~~)l+) [L, R] takes contributions from states with both even and odd 

b f . l I f t f ll · t' 3 4 (O) eq.(3.4· 76) d num er o partie es. n ac , o owmg sec 1on . , gi+) = gfixed an 

(l) (l) 1 eq.(3.4.76) 
m+) = gl-) = J2gfixed 0 ( 4.6.16) 

In conclusion, the appearance of the extra symmetry factor q+) = ~ is related 

to the kink selection rule restricting the possible multi-particle states. In the Ising 

model this was seen in the exact formula for the low-temperature partition function 

Z(+I+)[L, R], by it being written as an averaged sum of Z~~I+)[L, R] and Z~~I+)[L, R]. 

In more general theories with discrete symmetries, similar considerations ap

ply. Consider a set of i = 1, 2, ... N 'fixed' boundary conditions, matching the 

z = 1, 2, ... N vacua. A derivation of Z(ili) as in section 3.4, including all multi

particle states satisfying the Bethe momentum quantisation conditions, will give an 

incorrect answer, since some states will be forbidden by the kink structure. Instead, 

one can construct a new boundary state 

N 

IU) = LIJ)' (4.6.17) 
j=l 

and consider the partition function Z(uji). Since boundary scattering does not mix 

vacua it is clear that the only effect of replacing li) by IU) is to eliminate the kink 
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condition on allowed multiparticle states. Thus the counting of states on an interval 

with U at one end and i at the other is exactly the same as it would be in a high

temperature phase with the reflection factor at both ends being Rli) (e), and the 

derivation in section 3.4 goes through to find at large R 

( 4.6.18) 

Recall, from section 3.4, that Q(0l(t) is the massive g-function, defined by 

( 4.6.19) 

which is related to the g-function for the boundary condition a by a linearly-growing 

piece - ilcl:) L: 

ln9ia)(l) = lnQI~?(l) + fla)L. ( 4.6.20) 

Q(O) is therefore ~ Up to a linear term ~ given by ( 4.6.1) with q'l~a) (e) = </J~) (e) and 

qa) = 1. On the other hand, since all vacua are related by the discrete symmetry Z 

and the finite-volume vacuum state /'¢0) must be symmetrical under this symmetry, 

( '¢o / i ) = ( '¢o /j ) V i, j, and so 

(Q(o)(l))2 = ( U/'¢o )( '¢o/i) = N ( '¢o/i )
2 

= N (g(o)(t)) 2. 
( '¢o /'¢o) ( '¢o /'¢o) It) 

( 4.6.21) 

Hence 

9ii) (l) = )Ng(l) ( 4.6.22) 

and 91i)(l) is given by the formula (4.6.1) with qi) = JN. 
An immediate consequence is that in the infrared, 9li) ( l) does not tend to one. 

Instead, 
0 1 

hm 9ii) ( l) = qi) = 17\T . 
hoo y N 

( 4.6.23) 

This perhaps-surprising claim can be justified independently. Recall from section 3.3 

that in infinite volume, boundary states can be described using a basis of scattering 

states [72]: 

( 4.6.24) 

where /0) is the bulk vacuum for an infinite line. In finite but large volumes, the same 

expression provides a good approximation to the boundary state, the only modifica

tion normally being that the momenta of the multiparticle states must be quantised 

by the relevant Bethe ansatz equations. However a subtlety arises when there is a 
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degeneracy among the bulk vacua, in situations where the boundary condition distin

guishes betw;een these vacua. Take the case of a fixed boundary condition which picks 

out one of the degenerate vacua, say i: then the state IO) on the RHS of (4.6.24) is li). 

However when calculating the finite-volume g-function, one must consider ( 'l,b0 IB ), 
where ('l,bol is the finite-volume vacuum. (Note that the bulk energy is normalised to 

zero when considering (4.6.24), so this inner product gives g directly, rather than 9.) 

In large but finite volumes, the tunnelling amplitude between the infinite-volume bulk 

vacua is non~zero and so the appropriately-normalised finite volume ground state is 

the symmetric combination 
1 N 

('l,bol = yiN L (jl. 
J=l 

( 4.6.25) 

The limiting value of g in the infrared is therefore not 1, but 1/ v'JV, as found in the 

exact calculation earlier. 

Table 4.3 lists the central charge, the Coxeter number, the symmetry group Z, 

and the number of degenerate vacua for the ADET models. For the Ar, Dr, E6 

and E7 theories at low temperatures there is a coexistence of N vacuum states li), 

i = 1, 2, ... , N, with N = r + 1, 4, 3 and 2 respectively. The corresponding symmetry 

factor qi), for fixed-type boundary conditions which pick out a single bulk vacuum, 

is always 1/v'JV. 

4.6.3 Further properties of the exact g-function 

An important property of the sets of TBA equations under consideration here con

cerns the so-called Y-functions [34], 

( 4.6.26) 

Recall from section 2.5 that these functions satisfy a set of functional relations called 

a Y-system: 
rg [G] 

Ya(B + inYa(B- in= II (1 + Yb(O))Aba , (4.6.27) 
b=l 

where Al;l is the incidence matrix of the Dynkin diagram labelling the TBA system. 

Defining an associated set of T -functions through the relations 

Tg [Gj 

Ya(O) =II (Tc(O))Aca 1 1 + Ya(O) = Ta(O + i*)Ta(O- i*) ( 4.6.28) 
c=l 
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Model Cetr(O) Coxeter number h Global symmetry Z N 

Ar 2r r+1 Zr+l r+1 r+3 

Dr (r even) 1 2r- 2 z2 x z2 4 

Dr (r odd) 1 2r- 2 z4 4 

E6 6 12 z3 3 7 

E1 7 18 Z2 2 10 

Es 1 30 z1 1 2 

Tr 2r 2r + 1 z1 1 2r+3 

Table 4.3: Data for the ADET purely elastic scattering theories. The symmetry factor 

qi) for fixed-type boundary conditions is 1/ VN in each case, where N is the number of 

degenerate vacua in the low-temperature phase. 

then 

( 4.6.29) 
c=l 

In addition, the T-functions satisfy 

rg 

Ta(e + i~)Ta(e- i17) = 1 + IJ (n(e))A~': 1 
( 4.6.30) 

b=l 

Fourier transforming the logarithm of equation ( 4.6.29), solving taking the large () 

asymptotic into account, and transforming back recovers the (standard) formula 

a=1, ... r 9 , ( 4.6.31) 

where [34, 88] 

Xab(()) =- { dk eikB (2cosh(k7r/h)li- A[G]rb
1 

= _ _!_dd()S~(()). 
}IW. 2n a 2n 

(4.6.32) 

The result ( 4.6.31) allows a connection to be made between the exact g-functions for 

the parameter-dependent reflection factors in section 4.4 and the T functions. Taking 

the reflection factors defined by ( 4.4.8) and ( 4.4.6) 

( 4.6.33) 
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and using (4.6.1), 

Comparing this result with (4.6.31) and using the property Tb(e) = n( -e), 

ln 9ib C) ( l) = ln g( l) + ln Tb (i?!_h c) - Llvfb1r cos (?!_c) 
' 2 cosh h 

or, subtracting the linear contribution: 

126 

( 4.6.34) 

(4.6.35) 

(4.6.36) 

Exact relations between g- and T- functions in various situations where the bulk 

remains critical were observed in [107, 49, 108]. These were extended off-criticality 

to a relation between the 9- and T- function of the Lee-Yang model in [79]. The 

generalisation of [79] proposed here relies on the specific forms of the one-parameter 

families of reflection factors in section 4.4, and so provides some further motivation 

for their introduction. 

It is sometimes helpful to have an alternative representation for the infinite sum 

~(l) in (4.6.1), the piece of the g-function which does not depend on the specific 

boundary condition. It can be checked that, for values of l such that the sum con-

verges, 
CXl 1 CXl 1 

~(l) = L -TrKn- L -TrHn 
n 2n 

n=l n=l 

( 4.6.37) 

where 

K (e e') = ~ 1 (A. (e e') A. (e - e')) 
1 

ab ' 2 V1 + eEa(O) 'Pab + + 'Pab V1 + eEb(O') 
( 4.6.38) 

and 

H (e e') -
1 

A. (e - e') 
1 

ab , - J (n) 'Pab J (n') 1 + eEa u 1 + eEb u 

(4.6.39) 

The identity 
CXl 1 

ln Det(I- lvf) = Tr ln(I- l\1) = - L -TrM-n 
n 

n=l 

( 4.6.40) 

then allows ~( l) to be rewritten as 

1 ( 1-H) ~(l)= 2 lnDet (I-K)2 . ( 4.6.41) 

This formula makes sense even when the original sum diverges, a fact that will be 

used in the next section. 
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4. 7 UV values of the g-function 

Taking into account the effect of vacuum degeneracies described above, a first test 

of the reflection factors found earlier is to calculate the l ~ 0 limit of ( 4.6.1 ). The 

value of 9io:) (0) should match the value of a conformal field theory g-function, either 

of a Cardy state or of a superposition of such states. 

As l ~ 0, the pseudoenergies Ea(O) tend to constants, which are denoted here by 

fa· Their values were tabulated by Klassen and Melzer in [32], who also observed an 

elegant formula for the integrals of the logarithmic derivatives of the bulk 8-matrix 

elements, later proven in [86] : 

1 dO</Yab(O) =-Nab, (4.7.1) 

where Nab is related to the Cartan matrix C of the associated Lie algebra by N = 

2C~ 1 
- 1., The integrals of the logarithmic derivatives of the reflection factors are 

also needed. Writing 

(4.7.2) 
xEA 

for some set A, the required integrals are 

(4.7.3) 

with sign[O] = 0. For the minimal ADE reflection factors found in section 4.3 these 

evaluate to 1 dO ¢~o:)(O) = 1- Naa, 

while for the Tr reflection factors (4.5.4), 

To calculate the UV limit of L.(l), define a matrix M whose elements are 

M = _ Nab 
ab 1 + eEa ' 

2 -1 

-1 2 -1 

'~~The Cartan matrix for Tr is taken to be 

2 -1 

-1 1 

(4.7.4) 

(4.7.5) 

(4.7.6) 
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in terms of which 

(4.7.7) 

where e1 , ... , er are the eigenvalues of M. When one of these eigenvalues is larger 

than 1, the infinite sum does not converge (this is the case for Ar, T 2: 5, Dr, T 2: 4 

and Er) but the RHS of ( 4. 7. 7) gives the correct analytic continuation, since it follows 

from ( 4.6.41). 

4.7.1 Tr 

Begin with the Tr theories, whose UV limits are the non-unitary minimal models 

M2,2r+3. There are T+ 1 'pure' conformal boundary conditions, and the corresponding 

values of the conformal g-functions can be found using the formula 

s(l,l+r);(1,l+d) 
9(1,l+d) = IS 11/2 

(1,l+r),(1,1) 
d = 0, .. . ,T (4.7.8) 

where ( 1, 1 + T) is the ground state of the bulk theory, with lowest conformal weight, 

(1, 1) is the 'conformal vacuum' -with conformal weight 0- and S is the modular 

S-matrix. Recall from section 2.2.2 that the components of S for a general minimal 

model Mp'p are 

S 2 /2( 1) 1 +mp+na · ( P ) · ( p' ) (n,m);(p,a) = y PiJ - sm 1f p' np sm 1f p mCJ , (4.7.9) 

where 1 :::; n, p :::; p'- 1, 1 :::; m, CJ :::; p- 1 and, to avoid double-counting, m < Jln 
and p < E,CJ. For the Tr theories, p' = 2 and p = 2T + 3, and so n and p are both p 

equal to 1 while m and CJ range from 1 toT+ 1, as in (4.7.8). 

The values predicted by ( 4. 7.8) should be compared with the values of 9ia) (0) cal

culated from ( 4.6.1). For the boundary-parameter-independent part of the reflection 

factor from (4.5.4), which is the d = 0 case of the 'quantum group reduced' options 

(4.5.12), the second term of (4.6.1) evaluates to 

1 Lr ( sin2 ( 2r~3) ) = -- a ln 1 + -------'--'----~ 
2 · ( a1r ) · ((a+2)7r) a=l Sin 2r+3 Sll1 2r+3 

= ln (sin(~) sinr (~)) 
sinr+l ((r+1)7r) ' 

2r+3 

(4.7.10) 
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while ~(0), calculated using (4.7.7), is 

1 1 ( 2 . ((r+1)7r)) --ln ((1- el) ... (1- er)) = -ln y'2T+3 sm 
4 2 2r+3 2r+3 

(4.7.11) 

Adding these terms together and using some simple trigonometric identities reveals 

a dramatic simplification: 

I 

g(l)lz=o = (~sin ( 2r:3)) 
2 

= 9(1,1) (4.7.12) 

for all r. This suggests that the minimal Tr reflection factors ( 4.5.5) describe bulk 

perturbations of the boundary conformal field theory with ( 1, 1) boundary conditions. 

Notice that among all of the possible conformal boundary conditions in the unper

turbed theory, this is the only one with no relevant boundary operators, matching 

the fact that the minimal reflection factors ( 4.5.5) have no free parameters. 

The ADE cases exhibit an interestingly uniform structure: substituting ( 4. 7.1) and 

( 4. 7.4) into ( 4.6.1) shows that the UV limit of the second, reflection-factor-dependent, 

term of ( 4.6.1) is always zero when the minimal reflection factors from section 4.3 

are used. This result can be confirmed by examining the contributions of the blocks 

(x) of S(20), and (x) (or (x)) of Rlal(O), as follows. Since the bulkS-matrix can be 

written as 

(4.7.13) 

where {x} = (x + 1) (x- 1), Sab(20) can be written similarly: 

Sab(20) = IT [x](O) (4.7.14) 
xEAab 

where 

(4.7.15) 

Summing the contributions of each block [x], it is easily seen that 

(4.7.16) 
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The minimal reflection factors discussed in section 4.3 can be written in a similar 

way: 

(4.7.17) 
xEAaa 

where each fx is either (x) or (x). The contribution to J d() ¢~a) (B) from each (x) 

is -2 + 2x/h + 2r5x,l and from each (x) is -2 + 2xjh. Noting that every minimal 

reflection factor contains the block (1) exactly once, this integral can be written as 

(4.7.18) 

and so 

(4.7.19) 

for every A, D and E theory, as claimed. Working backwards, this gives a general 

proof of the formula (4.7.4), given (4.7.1). 

With the reflection-factor-dependent term giving zero, the sum of :E(O) and the 

symmetry factor should correspond to a conformal g-function value. To find these 

values in a uniform way, the diagonal coset description g 1 x gifg2 will be employed, 

where g1 is the affine Lie algebra at level l associated to one of the A, D or E Lie 

algebras [109]. Recall that coset fields are specified by triples {jt, v; p} ofg weights at 

levels 1, 1 and 2, and the g-function for the corresponding conformal boundary condi

tion can be written in terms of the modular S-matrix of the coset model S{o,o;o}{jl,v;p} 

as 
S{O,O;O}{jl,i);p} 

9{jl,V;p} = . IS v {0,0;0}{0,0;0} 

( 4.7.20) 

Once the levell has been specified, the representation of g1 is completely determined 

by the Dynkin labels of the corresponding representation of g. For example, the label 

0 is given to the vacuum representation, where ni = 0, i = 1, ... , r 9 for both g 1 and 

For the level 1 representations of simply laced affine Lie algebras, the characters 

have a particularly simple form [110, 111]: 

(4.7.21) 
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where q = exp(2niT) and the generalised e and Dedekind 'TJ functions are 

ep,(q) - L q~(l.t,IL) (4.7.22) 
~-tEQ 

00 

TJ(q) - q~ II (1- qn). (4.7.23) 
n=l 

Under the modular transformation T---+ _.! the theta function transforms as 
T 

(4.7.24) 

where P and Q are the weight lattice and root lattice respectively [111, 93], and the 

'TJ function becomes 
1 1 

TJ(--) = (-iT)2TJ(T). 
T 

(4.7.25) 

The modular S-matrix for level 1 is therefore 

(4.7.26) 

For the coset description of the g-function, (4.7.20), one needs to compute S~ti which 

is simply 

Sbti = 1 
JIP/QI 

( 4.7.27) 

It is important to note that P / Q is isomorphic to the centre of the group under con-

sideration [112, 97]. The group of field identifications of the coset is also isomorphic 

to the centre of this group so consequently ( 4. 7.27) becomes 

s(ll- _1_ 
OP,- VN for all /1. (4.7.28) 

The g-function can now be written in terms of the level 2 modular S matrices only: 

Sb~ 
/S[fj' 9{P,,v;/J} = 9/J = (4.7.29) 

As is clear from (4.7.29), identifying the conformal g-function value will only pin 

down the level 2 representation. For E8 , since there is only one possible level 1 

representation (with Dynkin labels ni = 0, i = 1, ... , 8), by specifying the level 2 

representation the coset field is fixed. However, for other cases, although the coset 

selection and identification rules ( 4.2.81), ( 4.2.85) do constrain the possible coset rep

resentations there is still some ambiguity left, in general. For example, for the Ar 
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cases the selection and identification rules are quite simple and the possible cosets, 

given a fixed level 2 weight, are shown in table 4.4. The notation is as follows: jij, 

vj are level 1 weights and pj is the level 2 weight with Dynkin labels ni = 1 fori = j 

and ni = 0, i = 1, ... , r otherwise. The labels ji0 , v0 and Po now represent 0 with 

Dynkin labels ni = 0, i = 1, ... , r. 

Fixed level 2 weight Level 1 weight Level 1 weight Number of coset 
~ ~ 

fields {ji, v; p} p J.L v 

0 0 0 

1-Li Vr+l-i, i = 1, ... r r+1 

Pj 1-Li vj-i, i = 0, .. . j 

j = 1, ... [(r + 1)/2] I-Lj+k Vr+l-k, k = 1, ... r-j r+1 

Table 4.4: Ar coset fields, indicating the number of distinct fields for each level 2 weight; 

in the first column, [x] denotes the integer part of x 

The coset fields for the A2 (three-state Potts model) and E7 (tricritical Ising 

model) cases, along with the corresponding boundary condition labels from [113] and 

[114] respectively, are given in tables 4.5 and 4.6 as concrete examples. 

It is useful to note that for the Ar, Dn E6 and E7 models, S00 = S0 -p only when 

p = AO for some A E O(g) [115] and for each such p there is a unique coset field, so 

the number of fields with g-function equal to 9{P,,D,o} is equal to the size of the orbit of 

0. On the other hand, E8 has no diagram symmetry, but it is also exceptional in that 

S 0o = So-p
2 

where p2 has Dynkin labels n 2 = 1, all other ni = 0. Physically, this is to 

be expected as the two fields correspond to the two fixed boundary conditions (-) 

and ( + ), which clearly must have equal g-function values. (This exceptional equality 

is discussed from a more mathematical perspective in, for example, [115].) 

From ( 4.2.82) it is clear that So(Ap) = S 0 -p is also true for p -:/: 0. For the A and 

E models at level 2, these are found to be the only cases where So-p; = S 0 -p
1

; for the 

Dr models there is more degeneracy. 

The modular S matrices, S0 -p can be calculated with ( 4.2.46), alternatively, al

gorithms for computing these matrices are given by Gannon in [116]; Schellekens 
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A2 

Coset field Boundary label Level 2 weight label 

from [113J from table 4. 7 

{[1,0,0], [1,0,0J; [2,0,0]} A 

{[0, 0, 1], [0, 1, OJ; [2, 0, 0]} B 0 

{[0, 1, OJ, [0, 0, 1]; [2, 0, 0]} c 

{[1, 0, OJ, [0, 1, OJ; [1, 1, 0]} AB 

{[0, 0, 1], [0, 0, 1J; [1, 1, 0]} BC P1 

{[0, 1, OJ, [1, 0, OJ; [1, 1, 0]} AC 

Table 4.5: A2 coset fields with the corresponding boundary labels and level 2 weight labels 

from table 4.7. The weights are given in terms of Dynkin labels [no, n1, n2, ... J 

has also produced a useful program for their calculation [117]. The level 2 modular 

S-matrix elements for A, D and E theories needed to calculate the UV values of the 

g-functions using ( 4. 7.29) are given in table 4. 7. The representations are labelled by 

the Dynkin labels, ni, i = 0, ... , r. The number of coset fields corresponding to each 

label is equal to the order of the orbit of that level 2 weight, under the outer auto

morphism group O(g). Note for Dr, r even, the weights Pr-l and Pr are in different 

orbits, each with order 2, whereas for r odd they are in the same orbit with order 4, 

so in both cases there are 4 coset fields with the same g-function value. 

For each coset, the possible CFT values of the g-function can now be calculated 

using (4.7.29) and the modular S-matrix elements given in table 4.7. Working case

by-case, these numbers can be checked against the sums ln qa) + ~(0), the UV 

limits of the off-critical g-functions g(l) for the minimal reflection factors described 

in section 4.3. In every case, they are found to be 

lng(l)lz=o = lnqa) + ~(0) = lngo ( 4.7.30) 

provided that the symmetry factors qa) are assigned as in table 4.3. The explicit 

g-function values are given in table 4.8. 

For some minimal models, g0 can be compared to the values of the g-function 
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E7 

Coset field Boundary label Level 2 weight label 

from [114] from table 4. 7 

{[1, 0, ... '0], [1, 0, ... '0], [2, 0, ... '0]} (-) 0 

{[0, 1, 0, ... ], [0, 1, 0, ... ]; [2, 0, ... '0]} ( +) 

{[1, 0, ... '0], [0, 1, 0, ... ]; [1, 1, 0, ... '0]} (d) P1 

{[1, 0, ... '0], [1, 0, ... '0]; [0, 0, 1, 0, ... ]} ( -0) P2 

{[0, 1, 0, ... ], [0, 1, 0, ... ]; [0, 0, 1, 0, ... ]} (0+) 

{[1, 0, ... , OJ, [0, 1, 0, ... ]; [0, 0, 0, 1, 0, ... ]} (0) P3 

Table 4.6: E7 coset fields with the corresponding boundary labels and level 2 weight labels 

from table 4.7. The weights are given in terms of Dynkin labels [no, n1, n2, ... ] 

corresponding to known cases, thereby matching the reflection factors to physical 

boundary conditions. For the three-state Potts model (A2 ), the tricritical Ising model 

(E7 ) and the Ising model (E8 ) the corresponding boundary condition is the 'fixed' 

condition in each case [113, 114, 3]. Note the number of coset fields with g-function 

equal to g0 corresponds to the number of degenerate vacua, and hence to the number 

of possible 'fixed' boundary conditions for all A, D and E models. 

4.8 Checks in conformal perturbation theory 

The off-critical g-functions only match boundary conformal field theory values in the 

far ultraviolet. Moving away from this point one expects a variety of corrections, some 

of which were analysed using conformal perturbation theory in [79]. The expansion 

provided by the exact g-function result is instead about the infrared, but convergence 

is sufficiently fast that the first few terms of the UV expansion can be extracted 

numerically, allowing a comparison with conformal perturbation theory to be made. 

In [4] this was done for the boundary Lee-Yang model; in this section the more 

general proposals for the case of the three-state Potts model are tested. In [79], the 
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S-matrix element Labels 

s(2)- .~~ ( ) ·l~+lj ( ) Ar 
2 --r- . 7r -2- . kn: 0: no = 2 , ni = 0 for i = 1, ... , r 00- (h+2)Vh Sill h+2 rrk=1 Sill h+2 

no=l,n;={ 
0 i:f:j 

Pj 
1 ~=J 

h+3 ( ) [h+I] ( ) s(2) - 2--r- . (J+1)n: rr -2- . kn: for j = 1, ... , [h/2], Opj - (h+2)Vh Sill h+2 k=1 Sill h+2 

where [x] is the integer part of x 

and h is the Coxeter number. 

Dr s(2J- lft 
00 - 4 T 0 : no = 2 , ni = 0 for i = 1, ... , r 

P1 no = n1 = 1, all other ni = 0 

s(2l - s(2l - 2S(2l no= 0, n; = { 
0 i:f:j 

Op1 - Op
1 

- 00 Pj 
1 i=j 

for j = 2, ... , r /2 

s(2l - s(2J - _1_ ~ 

no = nr-1 = 1 , all other ni = 0 Opr-1 - Opr - 2V2 Pr-1: 

Pr : no = nr = 1 , all other ni = 0 

E6 s(2l 2 . ( 2n: ) 
00 = y'2I Sill h+2 0 : no = 2, ni = 0 for i = 1, I, 2, 3, 3, 4 

s(:J = - 2- sin c(4-j)n:) for j = 1 2 
Op1 y'2I h+2 ' P1 no = 1 , n 1 = 1 all other ni = 0 

~ 

no = 0 , n2 = 1 all other ni == 0 P2 

E7 5 (2) 2 . ( 4n: ) 
00 = V7l+2 Sill h+2 0 no = 2 , ni = 0 for i = 1, ... , 7 

s(
2

l 2r;!f; · ( sn: ) 
~ 

no = 1 , n 1 = 1 all other ni = 0 Opl = h+2 Slll h+2 P1 

s(2l 2 . ( sn: ) ~ 

no = 0 , n2 = 1 all other ni = 0 Op2 = )h+2 Sill h+2 P2 

s(2J 2r;!f;; . .( 4n: ) P3 no = 0 , n3 = 1 all other ni = 0 Op3 = h+2 Slll h+2 

Es 
s(2J - s(2l - 1. 

00 - Op2 - 2 0 : no = 2 , ni = 0 , for all i = 1, ... , 8 

P2 : no = 0 , n2 = 1 , all other ni = 0 

s(2J - _l__ 
Op1 - 72 P1 : no = 0 , n 1 = 1 all other ni = 0 

Table 4. 7: Level 2 modular S-matrix elements for A, D and E models 
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qo:) 90 Number of fields 

( h+a [h+l] I) 112 
Ar 1 2-----z-- · n -2- • kn r+1 Vr+T (h+2)Vh sm (h+2) nk=1 sm (h+2) 

Dr 1 ~(~)1/4 4 2 

E6 1 ( 2 . 2n ') 1/2 3 v'3 V2I sm ( h+2) 

E7 1 ( 2 · 4n ) 
112 

2 J2 v'h+2 sm ( h+2) 

Es 1 1 2 72 

Table 4.8: UV g-function values calculated from the minimal reflection factors for the A, 

D and E models 

treatment of conformal perturbation theory concentrated on the non-unitary Lee

Yang case whereas here a general discussion of the leading bulk-induced correction 

to the g-function in the (simpler to treat) unitary cases will be presented. 

Consider a unitary conformal field theory on a circle of circumference L, perturbed 

by a bulk spinless primary field r.p with scaling dimension Xcp = ~'P + ~'P . The 

perturbed Hamiltonian is then 

(4.8.1) 

where 

27r ( - c) Ha = - La + La - -
L 12 

(4.8.2) 

and 

H1 = ( ~) 1-x, f r.p(eiO) d(). (4.8.3) 

For ,\real in the ADE models a ,\-A1 relation of the form 

( ~)2-x, 1,\(!11)1 = '" ( 4.8.4) 

is also expected, with "'" a model-dependent constant. 

Leaving the boundary unperturbed, there is a conformal boundary condition a, 

with boundary state Ia). Set 9io:) = gfn) = (aiO) and g~) = (alr.p), where IO) and lr.p) 

are the states corresponding to the fields 1 and r.p. Since the theory is unitary, IO) is 

also the unperturbed ground state; and since r.p is primary, (Oir.piO) = 0. 

The aim is to calculate ln91n)(\ L) = ln(al!l) where Ia) is the unperturbed CFT 

boundary state, and 1!1) is the PCFT vacuum. This will be a power series in the 
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dimensionless quantity >..L2-x'P; here, the coefficient of the linear term, d~u), will be 

found. The calculation follows [79], but is a little different (and in fact simpler) 

because the theory is unitary, so that the ground state is the conformal vacuum IO). 

First-order perturbation theory implies 

(4.8.5) 
a 

where the sum is over all states excluding IO), ('ljla IO) :;::::: 0 and 

Da = ('ljlaiHIIO) 
(OIHoiO) - ('ljlaiHol'ljla) . 

(4.8.6) 

Since the theory is unitary, (OIHoiO)- ('ljlaiHol'ljla) = -('ljlai 2{(Lo + Lo)l'ljla)· Using 

rotational invariance as well, 

(4.8.7) 

Hence 

(4.8.8) 

where P = IO) (OI is the projector onto the ground state. Using the formula L 
1-L = o+ o 

fol qLo+Lo-1 dq, 

(4.8.9) 

Since (OI<piO) = 0 and qLo+Lo<p(1)IO) = qLo+Lo<p(1)q-Lo-LoiO) = qx'PIO) this last ex

pression simplifies to 

( 4.8.10) 

Now (o:l<p(q)IO) is a disc amplitude, and by Mobius invariance it is given by 

( 4.8.11) 

(This is a significant simplification over the nonunitary case discussed in [79], where 

the corresponding amplitude had to be expressed in terms of hypergeometric func

tions.) 

Taking logarithms, 

( 4.8.12) 
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and doing the integral, 
'P 

In) __ 1 gin) 
d1 -- - ( )1- - B(1-Xcp, Xcp/2) 

2 27r x"' 9in) 

where B(x, y) = f(x)r(y)jr(x+y) is the Euler beta function. 
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( 4.8.13) 

This is a general result. As a non-trivial check, specialise to the 3-state Potts 

model, described by the A2 scattering theory. There are three possible values A, B 

and C of the microscopic spin variable, related by an S3 symmetry. At criticality 

the model corresponds to a c = 4/5 conformal field theory. The primary fields are 

the identity I, a doublet of fields { '1/J, '1/Jt} of dimensions 1:11/J = 1:11/J = 2/3, the energy 

operator E of dimensions 1:1c- = 1:1c- = 2/5 and a second doublet of fields {a, at} with 

dimensions 1:10" = 1:10" = 1/15. The bulk perturbing operator i.p which leads to the 

A2 scattering theory is E, and so Xcp = 1:1c- + 1:1c- = 4/5. Boundary conditions and 

states for the unperturbed model are discussed in [68, 113]. One of the three 'fixed' 

boundary states, say lA), can be written in terms of W3-Ishibashi states as [68] 

(4.8.14) 

where K 4 = (5- \1'5)/30 and X 2 = (1 + \1'5)/2. Hence 

lngiA) = lnK = -0.5961357674 ... , g~/9iA) =X= 1.2720196495... (4.8.15) 

Putting everything into (4.8.13), the CPT prediction for the coefficient of the first 

perturbative correction to the g-function for fixed boundary conditions in the three

state Potts model is 
lA) d1 = -3.011357884 ... ( 4.8.16) 

The 3-state Potts model also admits 'mixed' boundary conditions AB, BC and CA 

[118]. For later use note, from [68], that the corresponding boundary state is 

lAB)= K [X21 I))- x-11 E))+ X 21 '1/J )) + X 217f} )) - x-11 a))- x-11 at))] 

(4.8.17) 

so that, for the AB boundary, one instead finds 

diAB) _____ 1 __ diA) 
1 -- X4 1 · (4.8.18) 

The results ( 4.8.15) and ( 4.8.16) can be compared to the numerical evaluation of 

the exact g-function result, written in terms of )..L615 using Fateev's formula [119] 

3r( 4/3) )5/6 ( ( I )5/12 
K, = f2(2/3) (27r (r 2/5)1 4 5) = 4.504307863 ... ( 4.8.19) 
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where r(x) = r(x)/f(1 - x). Setting X = )..£615 

(T- Tc) ex ).. < 0) a fit to the numerical data yields 

- ( l / r;,) 615 (remembering that 

ln g(l) = -0.596135768 - 0.49999991[ - 3.0113570 x 

- 0.909937 x2 + 0.3982 x 3 + 1.0 x 4 + ... ( 4.8.20) 

which agrees well with (4.8.15) and (4.8.16). The match of the constant term in 

(4.8.20) with lngiA) from (4.8.15) is guaranteed by the exact formula, and so serves 

as a check on the accuracy of our numerics. A calculation of the coefficient of the 

irregular (in x) term, proportional to l, as in [79], predicts the value 0.5, again in 

good agreement with the numerical results here. 

4.9 One-parameter families and RG flows 

Just as the minimal reflection factors were tested in section 4. 7, the same can now be 

done with the one-parameter families of reflection factors. These reflection factors, 

R1d,C)' depend on the parameter C and are given in (4.4.6) and (4.4.10). 

4.9.1 The ultraviolet limit 

If the parameter dependent reflection factors are used as input to calculate the g

function, (4.6.1), and the limit l-> 0 is taken then 

(4.9.1) 

where Td = Td(O) lz=o is a {}-independent constant. From ( 4.6.28) and ( 4.6.26) 

(4.9.2) 

where the Ed values can be found in [32]. For every AD ET theory, ( 4.9 .1) leads to a 

possible CFT g-function value. 

For M > 0 there will be many massive bulk flows as the parameter C is varied. 

However, it should be possible to tune C, as the limit l -> 0 is taken, so as to give a 

massless boundary flow between the conformal g-function gld), corresponding to the 

UV limit of the reflection factor R1d,C), and g, corresponding to the UV limit of the 

minimal reflection factor. These flows are depicted in figure 4.5. Note that the UV 
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g-function corresponding to the minimal reflection factors (g0 for the ADE cases and 

g( 1,1) for Tr) is the smallest conformal value in all cases so, by Affleck and Ludwig's 

g-theorem [3][71], this is a stable fixed point of the boundary RG flow. 

Massless 

Boundary 

Flow 

Massive Bulk Flow 

1-c:::o 

Figure 4.5: The expected RG flow pattern 

For the Tr case 

gld) = g( 1,d+ 1) for d = 1, ... , r. 

This is consistent with a simple pattern of flows 

(1, d+1) ----> (1, 1) for d = 1, ... , r. 

(4.9.3) 

(4.9.4) 

The conformal values corresponding to the UV limits of gld) for the A, D and E 

cases are given in tables 4.9 and 4.10. Again the boundary flows 

(4.9.5) 

are expected in each case. Notice that in many cases the UV g-function values are 

sums of 'simple' CFT values, corresponding to flows from superpositions of Cardy 

boundary conditions, driven by boundary-changing operators. 

The conjectured flow for the three-state Potts model (A2 ), g-p
1 

----> g0 , corresponds 

to the 'mixed-to--fixed' flow (AB ----> A) found by Affleck, Oshikawa and Saleur [113], 

and by Fredenhagen [120]. 

Similarly, the flow g-p
1 

----> g0 in the tricritical Ising model ( E7 ) corresponds to 

the 'degenerate-to-fixed' ((d)---->(-) or (d)---->(+)) flows of [121, 120]. Notice that 

g0 + g-p
2 

----> g0 in E7 matches the CFT g values for the flow (-) EB (0+) ----> (-) 

conjectured in [120]. However this latter flow is driven by the boundary field with 
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gil) = glr) = g/h 

gl2) = glr-1) = gPz 

g lr/2) = glr/2+1) = g- for r even Prj2 

g lh/2 ) = g- for r odd Ph/2 

li) - (. + 1) f . - 1 - 2 g - z go or z - , ... , r 

glr-1) = glr) = g- = g-Pr-1 Pr 

Table 4.9: UV g-function values for A and D models 

gil) gil) gPt gP! go+ gp1 
gl2) go+ gp2 go+ gp2 2go + gp1 
gl3) gl3) gP1 + gPz gPt + gP3 2g0 + 2gfj

1 

gl4) go+ gp1 + 2gpz go+ 2gPz 3go + 2giJ1 

gl5) go+ 3gPz 5go + 3giJ1 
gl6) 2gPt + 2gP3 5g0 + 4g1J1 

gl7) 3go + 6giJ2 9go + 6gp1 
gl8) 16g0 + 12gp1 

Table 4.10: UV g-function values for E6, E7 andEs models 

141 
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scaling dimension 3/5, which is inappropriate for the E7 coset description. A more 

careful analysis shows that the flow described here, which is driven by a boundary 

field with scaling dimension 1/10, must start from either ( + )EB(O+) or (- )EB( -0), and 

flow to ( +) or (- ). This serves as a useful reminder that the g-function values alone 

do not pin down a boundary condition, and that this ambiguity can be physically 

significant in situations involving superpositions of boundaries. 

4.9.2 On the relationship between the UV and IR parame-

ters 

The one-parameter families of boundary scattering theories introduced above should 

describe simultaneous perturbations of boundary conformal field theories by relevant 

bulk and boundary operators. The action is 

A - ABCFT + ABULK + ABND Ia) - Ia) Ia) ( 4.9.6) 

where A~)FT is the unperturbed boundary CFT action. Suppose that the boundary 

condition is imposed at x = 0; in general it might correspond to a superposition of 

Nla) Cardy states. Denoting these by ic), c = 1, 2, ... , Nla), the boundary is in the 

state 
Nlo.) 

Ia) = L nlc) I c), 
c=l 

with nlc) E N. The bulk perturbing term is 

ABULK =A~~ dx J: dy cp(x, y) 

while the boundary perturbing part is 

Nlo.) oo 

A~fD ~ c~ll'(old) [oo dy ¢1cld}(Y) . 

(4.9.7) 

(4.9.8) 

(4.9.9) 

The operators ¢(clc) live on a single Cardy boundary, while the ¢(cld) with c =/= d 

are boundary changing operators. Since ¢(cld) = <Ptdlc), in a unitary theory one also 

expects (see for example [122]) 

* J-i(cld) = J-i(dlc) · (4.9.10) 

Using periodicity arguments to analyse the behaviour of the ground-state energy 

on a strip with perturbed boundaries as in [34] and [78] (see also (4.9.15) and (4.9.16) 
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below), one can argue that the scaling dimensions of the fields rP(cJd) must, in these 

integrable cases, be half that of the bulk perturbing operator cp : 

x'P 2 
Xq, = 2 = h + 2 (4.9.11) 

for the ADE systems and 

( 4.9.12) 

for the Tr models. The results recorded in ( 4.9.3) and tables 4.9 and 4.10 provide infor

mation about the conformal boundary conditions associated with the one-parameter 

families of reflection factors. For Tr and Ar the boundary is always found to be in a 

pure Cardy state, while for Dr, E6 and E 7 this is true only in one case per model, 

and in the E8-related theories the UV boundary always corresponds to a non-trivial 

superposition of the states I±) and jfree). This observation fits nicely with the con

formal field theory results for the Ising model [68]: from (4.9.11) it is clear that for 

the E8 coset description the integrable boundary perturbation must have dimension 

xq, = 1/16, and indeed the only boundary operators with this dimension in the Ising 

model are rP(±Jfree) and rP(freeJ±). 

For simplicity, only the cases involving a single Cardy boundary will be discussed 

here, where 

( 4.9.13) 

As in the Ising and Lee-Yang examples of [72, 78], a simple formula is expected to link 

the couplings >. and f-i of bulk and boundary fields to the parameter C in the reflection 

factors. However, without a precise identification of the operator ¢ it is hard to see 

how such a relation can be determined. Even so, a general argument combined with 

a numerically-supported conjecture allows the relation formula to be fixed up to a 

single overall dimensionless constant. This goes as follows. In section 4.6.3 it was 

shown that in all cases 

(4.9.14) 

where Td is the TEA-related T-function, and Q(o)(Z) is the CPT Q-function corre

sponding to the minimal reflection factor, for which there is no boundary pertur

bation. In addition, Td(B) = Td(B, l) is even in B, Td(B) = Td( -B), and periodic, 

Td(() + i1rht2) = Td(B), and so it can be Fourier expanded as 

(4.9.15) 
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The observation of [91], that Ta(B, l) admits an expansion with finite domain of con-
2h 

vergence in the pair of variables a± = ( le±e) h+2, can now be used to see that 

c0 (l) = c0 + 0 [h+2 , c1 (l) = c1 lh+2 + 0 [h+2 
( 

4h ) 2h ( 4h ) ( 4.9.16) 

The minimal Q-function also has an expansion 

00 

ln g(o) ( l) = ln g(o) + L 9klk(2-2x¢) (4.9.17) 
k=l 

while the conformal perturbation theory expansion of g 1~?c) has the form (see [79]) 

00 

lnQI~~/\f-t,L) = L Cmn(J-tLl-x<t>)m(>..L2-2x<Pt. (4.9.18) 
1n,n=l 

Comparing (4.9.14)- (4.9.17) with (4.9.18) one can conclude that, so long as c10 -=1 0, 

the relationship between C and f-t must have the form 

f-t = /-to cos -- A1 h+2 = /-to cos --C A1 - <t> 
~ ( 21r c) _]]!_ ~ ( 21r ) 1 x 

h+2 h+2 
(4.9.19) 

where /10 is an unknown dimensionless constant. However the result ( 4.9.19) can only 

be correct if 1-x¢ = 2h/(h+2). This is true only in the non-unitary Tr models, and 

indeed it reproduces the Lee-Yang result of [4] when specialised to T1. For the ADE 

theories, 1 - X¢ = h / ( h + 2) so c10 , the first f-t-dependent correction to Q, must be 

zero. (This is not surprising since in a unitary CFT this correction is proportional to 

( ¢ )~)k = 0.) The first contribution is then at order O(f-t2) = O(JvJ2-2
x<P ), and at this 

order there is an overlap between the expansions of Td( e, l) and g(o) ( l). This leads to 

the less-restricted result 

~ ( ( 21f ) ) ..1!.!:__ ~ ( ( 21f ) ) f-t 2 
= ko z + cos h + 

2 
C M h+2 = k0 z- cos h + 

2 
C A12

-
2

x<t> ( 4.9.20) 

~ 

where now both k0 and z are unknown constants. Consider now the Ising model, for 

which thef-t- C formula is known [72]. Written in terms of Cit becomes 

(4.9.21) 

I 
Thus the boundary magnetic field is an even function of C. It is then tempting to 

conjecture that z = 1 for all the 9il,C) cases in the Ar models, and, to preserve the 
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perfect square property, that z is either 1 or -1 in all other ADE single boundary 

condition situations: 

z= ~ (1rC) 1-x J1 ~ 1-x (1rC) 1 : J1 =!Locos -- .A1 <P +---> - = !LoK, <~>cos -- · 
h+2 ~ h+2 ' 

(4.9.22) 

~ ~ . (1rC) 1 x J1 ~ 1 x . (1rC) 
z = -1 : J1 = f-lo sm h+ 

2 
111 - <P +---> ~ = J-loK, - <P sm h+ 

2 
. (4.9.23) 

Return now to the physical picture of flows parametrised by C depicted in figure 4.5. 

At .\ = 0 the bulk mass is zero, and the only scale in the problem is that induced 

by the boundary coupling J-1. The massless boundary flow down the left-hand edge 

of the diagram therefore corresponds to varying lf-11 from 0 to oo. If.\ is instead kept 

finite and nonzero while lf-11 is sent to infinity, the flow will collapse onto the lower 

edge of the diagram, flowing from g0 in the UV. For the g-function calculations to 

reproduce this behaviour, the reflection factor should therefore reduce to its minimal 

version as lf-11 --> oo. For ( 4.9.22), lf-11 --> oo corresponds to C --> ioo, which does 

indeed reduce the reflection factor as required. On the other hand, taking lf-11 --> oo 

in (4.9.23), requires C--> 7r(h+2)/2 + ioo. While the reduction is again achieved in 

the limit, real analyticity of the reflection factors is lost at intermediate values of J-1. 

For this reason option (4.9.22) might be favoured, but more detailed work will be 

needed to make this a definitive conclusion. 

In fact, the proposal ( 4.9.22) can be checked at J1 = 0 in the 3-state Potts model 

(h = 3), as follows. Consider the results (4.8.16) and (4.8.18) and set 

J1 = -K,-
6/

5 (d~AB)- d~A)) = K,-
6/ 5 (1 + ;

4
) d~A) = -0.683763720... (4.9.24) 

According to the conclusions of section 4.9.1 and (4.9.22), 

(4.9.25) 

and (h should match the coefficients t 1 of [615 in the expansion of the function 

T1 (0, l)lo=o about l = 0. Noticing that T1 (0, l) = T2 (0, l) = TLy(O, l), table 6 of 

[79] can be used: lnTLy(i7r(b+3)/6) = E(i7r(b+3)/6), C = 5/2 corresponds to b = 2, 

h!VJ-615 = he= -0.6852899839, and so one finds 

t1 "' 0.9977728224 he = -0.683763721 ... ( 4.9.26) 

which within numerical accuracy is equal to 61 . 
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4.10 Boundary bound states of the three-state Potts 

model 

Another way to check the proposals made here is to look at the boundary pole 

structure of the reflection factors. In this section the boundary parameter dependent 

reflection factor for the three-state Potts model will be examined, which extends the 

work done for the Yang-Lee model in [74]. Each pole in the physical strip must 

correspond to a boundary bound state, unless a 'u-channel' or boundary Coleman

Thun type diagram can be drawn, as described in section 3.3. The boundary bound 

state bootstrap condition will be used to construct reflection factors for the excited 

state boundaries and the aim is to close the bootrap on a finite number of excited 

boundaries, and so conjecture the boundary spectrum. 

Recall that the 3-state Potts model has one of 3 possible spins, A, B or C at 

each lattice site. It is described by the A2 scattering theory where the two particles 

correspond to a kink/ anti-kink pair which interpolate between the spins A -----+ B -----+ C 

and A -----+ C -----+ B respectively. Particle 2 can be interpreted as a bound state of 

particle 1 with itself, and vice-versa, so the bulk fusing angles are Uf1 = U~2 = 

2n/3 and the S-matrix elements are S11 = S22 = (2), S 12 = -(1). The parameter 

dependent reflection factors, described in section 4.4 are 

(-2)(-1+C)(-1-C) 

( ~2)( -2 +C)( -2- C) 

(4.10.1) 

( 4.10.2) 

where IO) denotes the boundary ground state here. In the limit C -----+ ioo, the parame

ter dependent blocks disappear from these reflection factors leaving R 1 = R 2 = ( -2). 

There are no poles in the physical strip of these reflection factors, and so no bound

ary bound states as expected since this corresponds to a 'fixed' boundary condition. 

When the parameter C = 5/2, the boundary condition is the 'mixed' condition, say 

AB, so both spin A or B is allowed at the boundary, but not spin C. The parameter 

can therefore be thought of as indicating the preference of the boundary to be either 

spin A orB as it moves away from C = 5/2. 

The positions of the poles, and zeros, of (4.10.1) and (4.10.2) are shown in fig

ure 4.6 as C is varied. The pole positions are shown as solid lines, the zeros as 

dashed lines and the axes are dotted lines. Note that the physical strip for reflection 
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Figure 4.6: The poles and zeros of R~o) and R~o). The poles are solid lines, the zeros 

are dashed lines and the axes are dotted lines. 

factors is 0 :::; e :::; in/2 (half that of the bulk S-matrices) so a line at e = in /2 is 

also included for guidance. The reflection factors ( 4.10.1) and ( 4.10.2) are symmetric 

about C = 0 and C = 3 so the search for poles can be restricted to the physical 

strip with 0 :::; C :::; 3. For R~o) the only interesting pole occurs at e = i1r(C- 1)/3 

denoted a in figure 4.6(a). This must correspond to a bound state, with fusing angle 

( C - 1 )n /3, exciting the boundary to state 11). The difference in energies between 

these two states is 

(
(C-1)7r) e1 - e0 = m cos 

3 
(4.10.3) 

which vanishes when C = 5/2, indicating that the levels IO) and 11) are degenerate 

at this point and for C > 5/2, their roles swap, with 11) now acting as the ground 

state and IO) an excited state. This is precisely as expected when the kink picture 

is considered: associating IO) with, say, A and particle 1 with the kink, then 11) 

will be B. These two states become degenerate at C = 5/2, when the boundary 

condition is AB. Now as C increases above 5/2, the ground state becomes 11), 

and since acting on B with the antikink (particle 2) will give A one would expect 

R~1)(C > 5/2) = R~0)(C < 5/2) and R~1)(C > 5/2) = R~0)(C < 5/2). R~~~ can be 

found using the boundary bound state bootsrap condition given in (3.3.26): 

Jl) JO) ( ) ( ) R1 = R 1 Su e + C - 1 Su e - C + 1 
(4.10.4) 

= (-2)( -1 + C)(3- C) 
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c 

6 6 

Figure 4. 7: The poles and zeros of R~1 ) and R~1 ). The poles are solid lines, the zeros 

are dashed lines and the axes are dotted lines. 

11) IO) ( ) ( ) R2 = R2 821 B + C - 1 821 B - C + 1 

= (-2) (-2 - C) (C) . 

Using the property ( x ± 2h) = ( x), where h = 3 here, it is easy to show that 

R~0)(C =~-E) 

R~O) ( c = ~ - E) 

( -2)(~- E)(~+ E)= R~1)(C =~+E) 

( -2)(~- E)(~+ E)= R~1)(C =~+E) 

(4.10.5) 

( 4.10.6) 

(4.10.7) 

so in fact, one only needs to consider poles in the physical strip for 0 ::; C ::; 5/2 to 

get the full picture. 

In R~o), there is one such pole at i( C - 2)7r /3, labelled b in figure 4.6. This 

corresponds to a bound state, creating the boundary state J2), with energy 

(
(C-2)7r) e2 = e0 + m cos 

3 
. (4.10.8) 

The rapidities of the poles in R~1 ) and R~1 ) are shown in figure 4. 7. The pole, la

belled din figure 4. 7(a) is just the 'u-channel' version of pole a, shown in figure 4.8(a), 

whereas pole e corresponds to the Colemann-Thun process shown in figure 4.8(b). 

Naively, this ought to represent a double pole, but note that there is a zero in R~o) 

at i1r(2 - C) /3, which reduces the order appropriately. Diagram 4.8(b) is only valid 

for C < 2, at which point a bound state must form, with fusing angle (3- C)1r /3, 

creating a state J3), labelled in 4.7 by f. The pole at i7rC/3 in R~1 ) (gin figure 4.7(b)) 
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I o) 2 

C-1 3-C 

(a): poled (b): pole e 

Figure 4.8: Coleman-Thun diagrams for poles d and e in R~1 ) 

2 

2 c 

Figure 4.9: Coleman-Thun process diagram for pole g in R~1 ) 

has another Coleman-Thun description, shown in figure 4.9, which again due to the 

zero at in(2- C)/3 in R~o) describes a simple, rather than a double pole. 

As shown in (4.10.8), the energy of 12) is 

(
(C-2)n) e2 = e0 + m cos 

3 
( 4.10.9) 

where e0 is the energy of IO) and m is the mass of the kink/anti-kink. For state 13) 

the energy is 

e3 = eo+ m cos ( ( C ~ 1 )n) + m cos ( (
3 

-
3 
C)n) 

= eo + m cos ( ( C ~ 2)n) = e2 . 

( 4.10.10) 

As the states 12) and 13) have the same energy, the minimal assumption is that they 

are the same state. This is supported by the fact that the reflection factors R~2) and 
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c c 

9 e 

Figure 4.10: The poles and zeros of R~2) and R~2). Double poles (and zeros) are shown 

by double lines. 

Rl3), i = 1, 2 are also equal 

R~2) = R~o) S21 (B + C- 2)S2I(B- C + 2) 

= ( -2)( -1 + C) 2
( -1- C)(3- C)= R~3) 

(4.10.11) 

R~2 ) = R~o) S22(B + C- 2)S22(B- C + 2) 

= (-2)(-2 + C)(-2- C) 2 (C) = R~3) 
(4.10.12) 

and 

R~2)(C =~-E)= R~3)(C =~-E) 

= (~- E) 2 (~ +E)(~+ E) (4.10.13) 

= R~2\ c = ~ + E) = R~3) ( c = ~ + E) . 

The poles in Rl2
) ( Rl3

)) are shown in figure 4.10 (double poles are shown by double 

lines). The double pole at i1r(C- 1)/3 in R~2) (h in figure 4.10(a)), can be described 

in two ways: in terms of state 12) by figure 4.11(a), or state 13) by figure 4.11(b). In 

these cases there is no zero at i7r(3 - C) /3 in either R~o) or R~o), or at i1r( C - 2) /3 

in R~1 ) so these really are second order diagrams. The pole at i7r(3- C)/3 (i in 

figure 4.10(a)) cannot be easily described in terms of state 12), but has a simple 

description in terms of 13) as the 'u-channel' version of pole j, shown in figure 4.12. 

The single pole at i7r(C-2)/3 in R~2) (j in figure 4.10(b)) is the 'u-channel' version 

of pole b, as shown in figure 4.13(a), whereas the double pole at i7r(4- C)/3 (k in 



4.10. Boundary bound states of the three-state Potts model 151 

I~ 

C-1 • 

C-1 

(a): pole h, in terms of 12) (b): pole h, in terms of 13) 

Figure 4.II: Coleman-Thun diagrams for the double pole h in R~2)=13) 

3-C 

Figure 4.I2: Coleman-Thun diagram for pole i in R~2) 

figure 4.IO) is explained by figure 4.I3(b). Once again there is no zero in R~o) at 

in(3- C)/3, so this is indeed second order. 

The boundary bound state bootstrap therefore closes on three states I 0), II) and 

12). The energies of II) and 12), in terms of e0 , the energy of IO), are 

e1 eo + m cos ( ( C ~ I )n) (4.10.I4) 

e2 = e0 + m cos ( ( C ~ 2 
)n) (4.IO.I5) 

They are shown in figure 4.I4, as a function of the boundary parameter C, indicating 

at what values they appear in the spectrum. In figure 4.I4(a), the energy of the 

ground state e0 is set to zero, and e1 and e2 are given in units of the kink/ antikink mass 

m. In order to show the symmetry between e0 and e 1 more clearly, in figure 4.I4(b), 

e0 is taken to be e0 = W (1 - cos( (C~l)n)) and again units of the kink/ antikink mass 

mare used. The one particle threshold (e0 +m, for C < 5/2 and e1 +m for C > 5/2), 

above which the spectrum is continuous, is also shown in bold in figure 4.I4(b). It 
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Figure 4.14: The boundary spectrum of the three-state Potts model, in units of the 

kink/ antikink mass m. The bold curve is the one particle threshold. 

should be possible to verify the spectrum shown in figure 4.14(b) using the boundary 

truncated conformal space approach [78]. 



Chapter 5 

PT symmetry breaking and 

exceptional points 

This chapter is concerned with the study of a family of PT-symmetric Hamiltonians, 

and in particular, in the Jordon block structures which emerge as the PT symmetry 

is spontaneously broken. At first sight, this has little in common with the previous 

work in this thesis, however the ODE/IM correspondence, described in section 2.6.2, 

does have an important role to play. Before this is discussed there will be a brief 

introduction to PT-symmetric quantum mechanics, which follows the recent review 

[50]. 

5.1 PT-symmetric Quantum Mechanics 

The study of PT-symmetric quantum mechanical theories began in private com

munication between Bessis and Zinn-Justin, who considered the spectrum of the 

Hamiltonian H = p2 + ix3
, with the corresponding Schrodinger equation 

(- d~2 + ix3
) 1/J(x) = E'lj;(x), 1/;(x) E L2 (IR). (5.1.1) 

Although this Hamiltonian is not Hermitian, and so the usual arguments to show 

the reality of the eigenvalues do not apply, numerical studies of this problem led 

Bessis and Zinn-Justin to conjecture that the spectrum of H is in fact both real and 

positive. Bender and Boettcher [63] suggested that the reality of the spectrum of this 

non-Hermitian Hamiltonian is due to it having PT-symmetry, where the parity Pacts 

by sending x ----+ -x and p ----+ -p, whereas the time reversal, T, sends p ----+ -p and 

153 
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i --+ -i. When the Hamiltonian, H, is PT-symmetric the following commutation 

relation holds: [H, PT] = 0. If H and PT are also simultaneously diagonalisable 

(which is not necessarily the case as PT is a non-linear operator) it can be shown 

that the spectrum of H is real, as follows [123]: working in the basis in which both 

Hand PT are simultaneously diagonal, so HI</J) = EI</J) and PTI</J) = ai</J), where a 

is a constant, then using (PT) 2 = 1, I<P) = PTPTI<P) = a*ai<P) so a is in fact a pure 

phase. It can therefore be absorbed into I<P) with the transformation I<P) --+ a 112 1</J) 

so that PTI</J) = 1</J) and HPTI<P) = EI</J). Since H and PT commute, this is also 

equal to PT HI¢) = E* I <P) and so E must be real. 

Consider now the situation where H and PT are not simultaneously diagonalis

able, so PTI</J) = I~) where I~) =/= al¢). Using the commutation relation of H and 

PT, HPTI¢) = PT HI¢), it is clear that HI~)= E*l~) so I~) is an eigenvector of H 

with eigenvalue E*. In these cases the PT-symmetry of His said to be spontaneously 

broken; the energy eigenvalues are no longer real, but appear in complex-conjugate 

pairs. The PT operator acts to interchange the eigenvectors with complex-conjugate 

eigenvalues [123]. 

Bender and Boettcher looked at a generalisation of the Bessis-Zinn-Justin prob

lem, the Hamiltonian HM = p2 - (ix) 2M (M real and > 0), and proposed that the 

spectrum of this is real and positive for Jvf 2: 1 [63]. As Jvf decreases below 1, they 

found that infinitely-many real eigenvalues pair off and become complex, and as Jvf 

reaches 0.5, the last real eigenvalue diverges to infinity. They interpreted this 'phase 

transition' at M = 1 as the spontaneous breaking of the PT symmetry of HM. 

A further generalisation was made by Dorey and Tateo in [65], where an angular 

momentum term was added to the Hamiltonian: 

H - 2 (.)2M l(l+1) 
Ml- p - 'lX + 2 ' , X (M, l real and Jvf > 0). (5.1.2) 

The conjecture made in [65], was that the spectrum of H 1d,l is real and positive for 

M 2: 1 and l2l + 11 < M + 1. For both of these generalisations, x is no longer 

restricted to the real line, so it is important to consider what boundary conditions 

to impose, as taking the quantisation contour to tend to infinity in different pairs 

of Stokes sectors will lead to different eigenvalue problems, as mentioned in Section 

2.6.2. Note that when M = 1 the Hamiltonian H 1 = p2 + x 2 is that of the simple 

harmonic oscillator, for which the quantisation contour is the real axis. When the 
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angular momentum term is introduced, this contour must be continued around the 

singularity at the origin. In general, Nf can take non-integer values and so to ensure 

that the -(ix) 2M term is single valued, a branch cut must be made. This is taken 

along the positive imaginary axis here, and so the continuation of the contour around 

the origin should be taken through the lower half plane. As M increases above 1, the 

resulting eigenvalue problem will be the correct continuation of the the simple har

monic oscillator, provided the quantisation contour tends to infinity in those Stokes 

sectors which contain the real axis for M = 1, namely S1 and S_ 1, where 

I 
27rk I 7r 

Sk := arg(x)- 2M+ 2 < 211.1 + 2. (5.1.3) 

The Stokes sectors S1 and S_ 1 rotate towards the negative imaginary axis as 11.1 

increases, but for Nf < 2, the real axis remains within these sectors and so can be 

taken as the quantisation contour (with suitable continuation around the singularity 

at the origin). When Nf = 2, the anti-Stokes lines which form the upper boundary 

of the sectors S1 and S_ 1 lie along the real axis, so for M 2: 2 the contour must 

be deformed from the real axis, down into the lower half plane [63], as shown in 

figure 5.1. 

' ' 

Im 

' 
' 

' ' 
' ' 

' ' ' ' 

Re 

Figure 5.1: A wavefunction contour for M 2: 2 

The spectrum of the following family of PT-symmetric eigenvalue problems, first 

studied in detail in [66, 124], are of particular interest in this thesis: 

(5.1.4) 
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For !11 = 1, this also reduces to the simple harmonic oscillator (with energy E +a), 

and the addition of the inhomogeneous term (ix)M-1 has no effect on the Stokes 

sectors so the contour Cis the same as that described above and shown in figure 5.1. 

This problem is invariant under the replacement l -------+ -1 -l , and it will be convenient 

in the following to trade l for A := l + !, so that the symmetry is between A and -A. 

The first interesting feature of (5.1.4), shared with many PT-symmetric problems, 

is the reality of the spectrum for many values of the parameters a and l. More 

precisely, for M > 1 and NI, a and A= l+! real, the spectrum of (5.1.4) is 

• real if a < M + 1 + 2 I A I ; 

• positive if a < M + 1 - 2 I A I . 

(5.1.5) 

(5.1.6) 

This was proved in [66] via the ODE/IM correspondence. This proof will be discussed 

shortly, but first it is worth seeing how the functional equations for this ODE differ 

from the simpler case described in section 2.6.2 [66] (see also [50]). 

5. 2 Functional relations 

As a small simplification, the factors of i can be eliminated from ( 5.1.4) by replacing 

x with z := x/i and setting <I>(z) := 1/J(x/i), so that the eigenproblem (5.1.4) becomes 

(5.2.1) 

where £k = -Ek. Note that the quantisation contour has also been rotated by 90°; 

the new contour is shown in figure 5.2. 

In parallel to the discussion presented in Section 2.6.2, the Stokes relations can 

be found by first defining the 'basic' solution, subdominant in the 50 sector, which 

in this case is 
z-111/2-u/2 ZM+l 

Y( z £ a A) rv e- 111+1 • ' ' ' V21 
From this 'basic' solution the following set of solutions can be generated: 

-rri 
w =eM+! 

(5.2.2) 

(5.2.3) 

for integer k, with each pair of solutions {Yk. Yk+ 1 } forming a basis. Following the 

same argument given in section 2.6.2, a Stokes relation can be found, of the form 

C(£, a, A)Yo(z, £,a, A) = Y-1 (z, £,a, A)+ Y1 (z, £,a, A) (5.2.4) 
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Im 

' 
' 
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' 
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' 
' 
' 
' 

Re 

Figure 5.2: Quantisation contours for the lateral and radial problems 

with the Stokes multiplier 

C(E, o:, .\) = W-1,1. 

Recall that Vf!j,k is shorthand for the Wronskian of the functions Y) and yk: 
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(5.2.5) 

(5.2.6) 

Since w11H 1 = -1, the only values of o: to appear in the functions Yk(z, E, o:, .\)are o: 

and -o: and so it is convenient to define 

cl±l(E) := C(E, ±o:, .\), yl±l(z, E):= y(z, E, ±o:, .\). 

Putting ±o: into (5.2.4) then leads to the pair of coupled equations 

c(+)(E)y(+l(z, E) = w-(l+n)/2y(-)(wz, w 2M E) 

+w(l+n)/2y(-) (w-1 z, w-2M E) 

w-(1-n)/2y(+) (wz, w2M E) 

+w(l-n)/2y(+) (w-1 z, w-2M E). 

(5.2.7) 

(5.2.8) 

(5.2.9) 

Now, consider the solutions to the radial problem, '1/J±(z, E, o:, .\), which are defined 

at the origin by 

(5.2.10) 

with '1/J_(z, o:, .\) = '1/J(z, o:, -.\). The z dependence of the Stokes relations can be 

removed by projecting onto these solutions. Let D(E, o:, .\) = lV[y, '1/J+](E, o:, .\) and 
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write D(±l(£) = D(£, ±a, A.). The Stokes relations then become 

c(+l(£)D(+l(£) = w-(2A+a)/2 D(-) (w2M £) 

+w(2A+a/2) D(-) (w-2/lif £) 

w-(2.\-o:)/2 D( +) (w2!vf £) 

+w(2.\~a/2) D(+l(w-2M £). 

158 

(5.2.11) 

(5.2.12) 

It is worth noting a few features of the multipliers C and D here. C(±) is defined 

as the Wronskian of the subdominant solutions in the 5 1 and 5_1 sectors. This 

Wronskian is zero if and only if the two solutions are linearly dependent, so in fact 

the solution is subdominant in both sectors. Such a solution is an eigenfunction of 

this lateral problem and soC(±) is a spectral determinant of this: the zeros of C±(£) 

are the eigenvalues of the eigenproblem (5.2.1) with <Pk(z) E L2(iC). D(±l(£) is also 

a spectral determinant, but for the radial problem, with boundary conditions set as 

x -> 0 and x -> +oo. This is easily seen as D is the Wronskian of two solutions, 

one subdominant in the 50 sector, and one which decays as z -> 0. The zeros of 

D(£) are therefore the eigenvalues of the radial problem. Note that the quantisation 

contour for this problem is along the real axis, as shown in figure 5.2, so this problem 

is Hermitian. 

Now, for M > 1, vVKB estimates show that the function D(±l(£) has order less 

than 1 [65], so Hadamard's factorisation theorem can be applied in its simplest form. 

This states that, if D(O, A.) =/= 0 then D(£, A.) can be written as an infinite product 

over its zeros. This constraint holds as it can be shown that [66] 

D(±l(£)l = = _1_ (M + 1) i;r\';-~ r (Nfh) 
£ o vl2i 2 r (i~~~c; + D 

and so 

Di±i(£, .\) ~ Di±l(o, .\) g ( 1- ~) 
Using (5.2.13) in (5.2.12), along with the identity 

r ( ~ + e) r (~ - e) = 7T 
2 2 cos(e7T) 

and remembering that D(-l(£) = D(£, -a, A.) and w = eA;~~ gives 

C(£, a, A.)l£=o = c(+l(£)1£=o 

= ( J\1; 1) M"'tl 27T 
r ( ~ + i~J-:2) r ( ~ - i~;+~a2) · 

(5.2.13) 

(5.2.14) 

(5.2.15) 

(5.2.16) 
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5.3 Reality proof 

The functional relations given above can now be used to reproduce the proof of (5.1.5) 

and (5.1.6) [66] (see also [50]), using techniques inspired by the Bethe ansatz. 

First, define the zeros of the spectral determinant C(+l(£) = C(£, a, A.) to be 

the set { -Ek}, and the zeros of D(±l(£) to be the set {£k±)}. Putting£= -Ek in 

(5.2.12) will fix the left of (5.2.12) to zero and so this equation can be rearranged to 

D(-l(w2Ek) -2.\-a 

D(-l(w-2Ek) = -w ' (5.3.1) 

and using the factorised form of D(-) forM> 1, (5.2.14) puts constraints on the Ek: 

ft. ( ~~~) + w::k ) = -w-2
.\-a, k = 1, 2, ... 

n=l En + W Ek 
(5.3.2) 

Each £A-) is an eigenvalue of an Hermitian operator H M,-a,.\ and is therefore real. 

Performing a Langer transformation [125] on HM,a,.\, by setting z = ex, y(z) = 

ex12¢( x), shows that £A- l solves the following eigenproblem 

(5.3.3) 

If a < 0, this is an everywhere positive potential and so£(-l is positive. Without loss 

of generality, it can be assumed that A. 2 0, since the original problem is invariant 

under A.------; -A. and so£(-) will be positive for a < A.. 

In fact, by considering the value of D(-l(£)1£=0, given in (5.2.13), it is clear that 

this first vanishes when a = M + 2..\ + 1, and so all £~-) must be positive up to this 

point. Taking the modulus squared of (5.3.2) and writing the eigenvalues of (5.2.1) 

as Ek = 1Eklei6
k gives 

IT (1£~-)1 2 
+ 1Ekl

2 
+ 2£A-)1Ekl cos(-ffh + bk)) = 

1 
n=l I£~-)I 2 +1Ekl 2 +2d-)1Eklcos(J~l-bk) . 

(5.3.4) 

For a < AJ + 2..\ + 1, all £~-) are positive and so each term in the product is greater 

than, less than, or equal to one dependent only on the values of the cosine in the 

numerator and denominator, which are independent of the index n. The product 

will therefore only be equal to one if each individual term is equal to one, which for 

Ek ::/- 0 requires cosCvJ~ 1 + bk) =cos( 1}~ 1 - bk), or equivalently 

. ( 27f ) . sm sm(bk) = 0. 
Jvf + 1 

(5.3.5) 
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As M > 1, this implies that 

(5.3.6) 

Relaxing the condition on A now, this shows that the eigenvalues of (5.1.4) forM> 1 

and a < M + I2AI are real. Note that most of the Ek become complex as Jvf falls 

below 1 [63], at least for a = 0. This coincides with the point at which the order of 

D(-l(£) is greater than 1, and so the factorised form of D(-l(£) given by Hadamard's 

factorisation theorem no longer has such a simple form and this proof breaks down. 

To prove the positivity at general values of M > 1, one must first consider the 

case of !vi = 1. This is the simple harmonic oscillator with angular momentum term 

(where a is absorbed as a shift in £), which is exactly solvable for all A and a in 

terms of confluent hypergeometric functions 

Now, using the analytic continuation formula, from [126] 

U(a b ze21rin) = (1- e- 21ribn) r(1 - b) M(a b z) + e- 21ribnU(a. b z) 
' ' r(1 +a- b) ' ' ' ' 

the Wronskian 

W[U(a, b, z), Jvf(a, b, z)] = ~~~~ z-bez 

and, for b > 1, the lzl --> 0 asymptotic 

r(b- 1) l-b 
U(a,b,z)rv r(a) z + ... 

it can be shown [65] [66] that 

21f 
C(£, a, A)IM=l = r(~ + 2>-+,f-a)r(~ _ 2.x-;+a) · 

(5.3.7) 

(5.3.8) 

(5.3.9) 

(5.3.10) 

(5.3.11) 

The eigenvalues of (5.1.4), forM= 1, are therefore Ek = 4k+2-a±2A, k = 1, 2, .... 

They are all real for all real values of a and A, and are all positive for a< 2- I2AI. 

For M > 1, provided a remains less than 1\1 + 1 + I2AI, all eigenvalues Ek will 

be confined to the real axis and so the point at which the first eigenvalue becomes 

negative will be signalled by the presence of a zero in C (- E, a, A) at E = 0. Recall, 

from (5.2.16), that 

C(£, a, A)l£=0 = (M; 1) M"'+l 27r 
r ( ~ + i;~~~) r ( ~ - i:/~~) 

(5.3.12) 
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and so the first zero when £ = - E = 0 appears when a = M + 1 -I2.AI; the spectrum 

is therefore entirely positive for all a < M + 1 - I2.AI and M > 1. 

Figure 5.3 shows the regions of parameter space for which the reality and positivity 

of the spectrum has been proved. So far, the reality of the spectrum of ( 5.1.4) has 

been proven for (a, 2).) E B U CUD, and positivity for (a, 2).) E D. This proof 

does not show that the reality of the spectrum breaks down for all, or indeed any, of 

the points in A, although this breakdown has been observed numerically for several 

points. In [124], Dorey, Dunning and Tateo explored the boundary of A, where they 

described a mechanism by which the breakdown of reality occurs. They also showed 

numerically that the phase diagram for M = 3 has a much more interesting structure 

than is shown in figure 5.3. A discussion of their work is presented below. 

a 

A 

B 
,' c 

; : M+l 
,' 

D 

Figure 5.3: The approximate 'phase diagram' at fixed !vi. The spectrum is entirely 

real in regions B, C and D, and positive in region D. 

5.4 Investigating the frontiers of the region of re

ality 

It is convenient here to adopt a new set of coordinates in the (2)., a) plane defined 

by 
1 

a± = M [a - M - 1 ± 2.A] . 
2 + 2 

(5.4.1) 

The frontiers of the region (5.1.5) of guaranteed reality are the lines, at ±45° in 

the (2)., a) plane, given by a± = 0. In this section, arguments from supersymmetric 

quantum mechanics will be used to show that his model has a protected E = 0 energy 
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level along these lines, and that level crossing with this protected E = 0 level can be 

seen as the mechanism by which the first levels pair-off and become complex as the 

region (5.1.5) is left [124]. This argument will also be extended to the lines a±= m, 

m E N, for the ./1.1 = 3 case, using the quasi-exact solvability of the model at these 

points. 

On the line a+= 0, a= .M + 1- 2.\ and the ODE (5.1.4) becomes 

( 
d2 .\2-!) -- + z2M + azM-I + 4 <I>(z) = -E<I>(z). 
dz2 z2 

This factorises as 

with 

Q 
d M 2.\- 1 

± = ±-+z ----
dz 2z ' 

(5.4.2) 

(5.4.3) 

(5.4.4) 

and such a factorisation usually points to a relationship with supersymmetry. It is 

easily seen that (5.4.3) has an E = 0 eigenfunction in L2 (iC): 

(5.4.5) 

which can be interpreted as having unbroken supersymmetry. All other eigenfunctions 
~ 

are paired with those of the SUSY partner Hamiltonian H = Q_Q+, which can 

be found by replacing (a+,a_) = (O,-,vJ~ 1 ) with (Ci+,Ci_) = (-1,-1- ~J~i) = 

( -1, cc - ~~ ~i). This problem is symmetric in .\ so sending .\ ---+ -.\ gives the E = 0 

eigenfunction on the line a_ = 0. The boundaries between the regions in figure 5.3 

coincide with the presence of the ( supersymmetric) zero-energy state in the spectrum. 

Ordinarily, this would be expected to be the ground state of the theory, which is the 

case on the boundary of D. On the boundary of A, however, this is only true for 

a < 1\1 + 3, due to level crossing which is not ruled out here by the usual theory of 

SUSY quantum mechanics as this problem is not Hermitian. 

To see this level crossing, consider C(£, a, l)IE=O, as given in (5.3.12), which in 

the a± coordinates is 

(5.4.6) 

This is zero when either a+ or a_ vanishes, as expected by the presence of the state 

1/J in the spectrum. Level-crossing occurs when a further level passes through zero. 
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To find the points where this occurs, consider the SUSY partner potential, which is 

isospectral to H except for the elimination of 1/J. Replacing a± in (5.4.6) with D± 

( 
1\;f + 1 ) (i- ---:-2_1f::---:-

2 r( -&_) 

(
1\;f + l)(i_ 21f 

M-1 . 
2 r(M+l-a_) 

(5.4.7) 

Level-crossings with the state 1/J are indicated by simple zeros of ( 5.4. 7), at (a+, a_) = 

(0, n + ~~~i), n = 0, 1, .... Swapping a+ and a_ (using the ,\ ~ -,\ symmetry) 

throughout gives level-crossings on the line a_ = 0. Note that these level-crossings 

are exact as 1/J is protected by supersymmetry, and cannot mix with any other state. 

As soon as this supersymmetric line is left level mixing can occur. In PT-symmetric 

systems, eigenvalues are all either real, or occur in complex-conjugate pairs. Com

plex eigenvalues can therefore only be formed via the intermediate coinciding of two 

(or more) previously-real eigenvalues. The supersymmetry on the lines a+ = 0 and 

a_ = 0 provides a mechanism for this pairing-off to occur, and for the formation of 

the associated exceptional points [124]. Exceptional points occur in the spectrum of 

an eigenvalue problem whenever the coalescence of two or more eigenvalues is accom

panied by a coalescence of the corresponding eigenvectors; at such points there is a 

branching of the spectral Riemann sur'face [127, 128, 129, 130]. For one-dimensional 

problems of the sort under discussion here, genuine degeneracies of levels are impossi

ble- since the Wronskian of any two solutions which both decay in some asymptotic 

direction must vanish - and so levels in this problem can only coincide at exceptional 

points. Quadratic exceptional points must therefore exist at 

( 
M -I) (a+,a_)= O,n+ Nf+I (5.4.8) 

for n EN. 

There is also a protected zero-energy level along the lines a± = m E N. Exception

ally, for Nf = 3 a similar line of argument can be applied here, using a higher-order 

supersymmetry to eliminate this zero energy level along with 2m others [66][124], 

which allows the positions of further quadratic exceptional points to be identified. 

As will become clear shortly, this is related to the fact that, for M = 3, the model is 

quasi-exactly solvable along these lines. 
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Specialising now to .1\1 = 3, the eigenproblem (5.2.1) becomes 

(- dd:2 + z6 + az2 + A
2

z~ ~) <I>k(z) = -Ek<I>k(z), (5.4.9) 

If boundary conditions are imposed at z = 0 and z = +oo, the problem (5.4.9) 

is quasi-exactly solvable whenever a and A are related by a = - ( 4J + 2A) for some 

integer J, and J energy levels can be computed exactly [131]. Bender and Dunne [132] 

found an elegant method to find the corresponding wavefunctions, square integrable 

along the positive real axis. The solutions to (5.4.9) must have this property along 

the contour i C, but with minor modifications the approach of [132] can still be used. 

First, look for solutions of the form 

(5.4.10) 

where 

(5.4.11) 

The functions ~P± ( z) can be shown to solve ( 5.4. 9) if the coefficients Pn satisfy the 

recursion relation 

Pn = -EPn-1 + 16(a/4 =f A/2- n + 1)(n- 1)(n- 1 ± A)Pn-2, n 2': 1 (5.4.12) 

with the condition that Pm = 0, rn < 0. The normalisation is set by the initial 

condition P0 = 1. If a/ 4 =f A/2 = J is a positive integer, then the second term 

on the RHS of (5.4.12) vanishes for n = J + 1, and so P1+1(E) is proportional to 

P1 (E), as are all subsequent coefficients Pm>J+1 (E). At a zero of P1 (E) the series 

therefore terminates and the J QES energy levels are found as those E that satisfy 

P1 (E) = 0. Due to the choice of exponential prefactor in (5.4.10) (inverse to that 

in [132]), the corresponding 1f)± ( z) will automatically satisfy the revised boundary 

conditions. Note, since the boundary conditions are not being imposed at the origin, 

both signs of A lead to acceptable solutions. 

For simplicity, choose +A in (5.4.10) so a= 4J + 2A (-A can be recovered using 

the A -----> -A symmetry) and write Pn, for n 2': J + 1 as 

(5.4.13) 

The Qn then satisfy the recursion relation 

Qn = -EQn-1 + 16(1- n)(n + J- 1)(n + J- 1 + A)Qn-2 (5.4.14) 
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with initial condition Q0 = 1. This matches the Pn relation if J ----+ J = -J, or 

alternatively, a1 ----+ CXJ = -a1 /2 + 3A and A ----+ ~J = a1 /4 + A/2. Then 

(5.4.15) 

This has an interesting consequence for the series expansion of (5.4.10), which can 

be seen by rewriting it as 

[ 
... + ~ (-~) n Pn(E, a], A) Z2nl 
~ 4 n!r(n+A+1) n=J 

[ 
... + ~. oo (-~)n+J PJ(E, aJ, A)Qn(E, aJ, A) z2(n+J)l 
~ 4 (n + J)! f(n + J +A+ 1) 

(5.4.16) 

where the dots represent lower order terms. Compare this with the expansion of 

·1/;(z, E, a1 , ~1 ): 

ol•( E ~ \ ) - ~ 5:+! ~ ( 1)n Pn(z, E, CXJ, ~J) 2n 
'f/ z, , a 1, -"J - e 4 z 2 ~ -- ~ z 

n=O 4 n!r(n+A+1) 
(5.4.17) 

which, using (5.4.15) and ~J = J +A becomes 

/ ( E ~ \ ) = z44 .X+J+~ ~ (-~) n Qn(E, a], A) 2n 
'1/) z, , a], AJ e Z ~ If( J , ) Z . · 

4 n. n + +-" + 1 
n=O 

( 5.4.18) 

It now follows that '1/;(z, E, a 1, A) is mapped onto a function proportional to '1/;(z, E, 51, ~1 ) 

by the differential operator 

(5.4.19) 

It can therefore be shown that Q1 (A) maps the eigenfunctions of H(a 1 , A) to those 

of H(a1 , ~1 ), or to zero [66]. The eigenfunctions which are mapped to zero are those 

for which P1(E, a1, A) vanishes, which are precisely the QES levels. The operator Q1 

is therefore a generalisation of the supersymmetry operator Q + for J > 1. 

The argument for the level-crossing along the a± = 0 lines can now be extended 

further for the A1 = 3 case [124]. In terms of the a± notation, the QES levels occur at 

(a+, a_) = (a+, ~ ( J -1)), for J a positive integer, which in the dual problem (with the 
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QES states removed from the spectrum) becomes (ii+, ii_) = (o:+- 1/2, -~(J + 1)). 

Substituting this into CIE=O (5.4.6): 

~ ~ ( A1 + 1) a+-~ ( 1 -
1 l 2n 

C(-E,o:+,o:-)iE=o,a_=-~(1+1) = 2 f(-ii+)r(~(J + 1)) 

( 
A1 + 1) -~(1 - 1 )+a+ 2n 

2 r( -o:+ + ~)r(~(J + 1)) 

(5.4.20) 

which is zero when o:+ = J /2 + n. Recall from above that the protected zero-energy 

levels lie on the lines O:± = m E N so if o:+ = m, J must be even and the quadratic 

exceptional points occur for 

(5.4.21) 

Replacing A with -A in the above simply swaps o:±, so there are also quadratic 

exceptional points at 

(5.4.22) 

It is also worth noting that the levels which become complex at these exceptional 

points are always in the QES part of the spectrum. This is easy to show once it is 

noted that the 'dual' problems, with (ii+, ii_) = (o:+- Jj2, ~(J + 1)), always lie in 

regions of the parameter space covered by the reality proof given above [124]. Since 

the spectrum of this dual problem is identical to that of the original, minus the QES 

levels, it is clear that the non-QES levels must always remain real. It also follows that 

the QES eigenvalues are symmetric about zero, i.e. both E and - E are contained in 

the QES sector of the spectrum. 

Numerical investigations at lv! = 3, reported in [124], showed that the way in 

which the spectrum of (5.1.4) becomes complex has considerably more structure than 

(5.1.5) might suggest. The curved, cusped line of figure 5.4 is a line of exceptional 

points which indicates where the first pair of complex eigenvalues is formed as the 

region of reality is left; it only touches the dotted lines c:t± = 0 at the isolated 

points given in (5.4.8), but it will be shown that the smooth segments are quadratic 

exceptional points, where two levels coalesce, while the cusps themselves are cubic 

points. 
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Figure 5.4: The domain of unreality in the (2)., a) plane for NI = 3, with portions of 

lines with protected zero-energy levels also shown. The horizontal axis is 2>. = 2l + 1. 

The additional dotted lines in figure 5.4 are the lines a ± E N. As mentioned 

earlier, the model has a protected zero-energy level, and for M = 3, is also quasi

exactly solvable along these lines. It is worth noting that the cusps in figure 5.4 

appear to lie exactly on these lines , to within numerical accuracy. 

If one asks when a second pair of complex eigenvalues is formed , and so on, 

figure 5.5 is obtained, again for M = 3. This plot is adapted from [50]; the same 

pattern was independently found by Sorrell [133] via a complex WKB treatment of 

the problem. Note the pattern of cusps is repeated , with the cusps again lying on 

lines of protected zero-energy levels , and the curve touching the lines a± = m E N 

at the points given in (5.4.21) and (5.4.22). 

The analysis of [124] left a number of questions open. While the merging and 

subsequent complexification of levels is suggestive of exceptional points and a Jordan 

block structure for the Hamiltonian, this has not been demonstrated explicitly. The 

apparent siting of the cusps on lines with simultaneous quasi-exact solvability and 

protected zero-energy levels has not been proved; in particular, it is not clear whether 

this feature should be associated with the zero-energy level (in which case it should 

persist for lvf =/=- 3) or with the quasi-exact solvability (in which case it might be lost 

for M =/=- 3). Finally, and connected with this last question , the general pattern away 

from M = 3 has not been explored. 

These issues are addressed in the rest of this chapter. For M = 3 the positions 
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Figure 5,5: The (2A , a) plane for M = 3, showing lines across which further pairs of 

complex eigenvalues are formed, 

of the cusps are investigated, and it will be proved that they do indeed lie on QES 

lines, The exceptional points in the spectrum will be examined and the Jordan form 

at such points found. Finally, the situation for M =1- 3 will be explored numerically, 

and the picture that emerges will be verified with a perturbative study near M = 1. 

This work can be found in [2] 

5.5 TheM 3 problem revisited - cusps and QES 

lines 

The first question to be addressed is what are the exact locations of the cusps? As 

shown above, the levels which become complex at exceptional points are always in 

the QES part of the spectrum, so the cubic exceptional points arise when three zero

energy levels appear in the QES sector of the spectrum, Since these eigenvalues are 

symmetric about E = 0, this occurs for odd J, and it is precisely this symmetry 

that constrains the cusp to lie exactly on QES lines, Figure 5.6 shows a surface plot 

of the energy levels for (2A, a) in the vicinity of the cusp at (2A , a) = ( -3, 9) (or 

(a+, a_)= (i , 1)), This shows the merging of two energy levels (at the bottom right 

and top left of the plot) and then the cusp being formed in the centre of the plot 

where three energy levels merge at a single point. The superimposed line indicates 
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0.1 

Figure 5.6: Surface plot of energy levels in the vicinity of the first cusp at (2A, a) = 

( -3, 9), or (a+ , a_) = (~ , 1). The axes are E = a+ - ~, rt = 1 -a_ and E. The 

superimposed line indicates the merging of levels. 

the merging of levels and the E = 0 line is also included. 

The exact locations of the cusps can be found by examining the Bender-Dunne 

polynomials P1 (E). For odd values of J, these polynomials split into a polynomial 

in E 2 multiplied by an overall factor of E, the first two being 

- E(E2 + 96 ± 64A) (5.5.1) 

-E(E4 + 320(±A + 5/2)E2 + 2048(8A2 + 40A + 41)) . (5.5.2) 

It follows that there will be three zero-energy levels whenever 

= 0. (5.5.3) 
E=O 

Swapping to the notation a ±, the cusp positions for positive values of A (which 

corresponds to taking -A in (5.4.10)) lie on the lines a+= (J -1)/2 = N+, each line 

having precisely a + cusps. Using the Bender-Dunne relation (5.4.12) , the constraint 

(5.5.3) is equivalent to Qa:+(a_) = 0 where Qn satisfies the first order recurrence 

relation 
n 

IJ(2j- 1)(2j- 2a+- 2)(2j + 2(a_- a+)- 1) 
j = l 
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Table 5.1: Location of some of the cusps in the (o:+, o:_)-plane forM= 3. 

with Q0 ( o:_) = 1. Solving the recursion relation (5.5.4) gives 

Ct+ 

Qa+(o:_) = 3F2([~, -o:+, ~ + o:_- o:+], [~- o:+, 1 + o:_- o:+], 1) ITU + o:_- o:+), 
j=l 

(5.5.5) 

which is a polynomial in o:_ of degree o:+. Mapping back to the variables 

(.\, o:) = (±2(o:+- o:_), 4(1 + 0:+ + o:_)) ' (5.5.6) 

the zeros of QN+ ( o:_) = 0 match all the cusp positions shown in figure 5.5, to within 

the numerical accuracy. Table 5.1 shows the location of the first few cusps. Having 

located the exceptional points, the next step if to show their Jordon block explicitly. 

5.6 The Jordan block at an exceptional point 

At an exceptional point, the Hamiltonian can be arranged so that it contains an 

n x n Jordan block, where n is the number of merging levels: two for the quadratic 

exceptional points, and three for the cubic ones. In general it is hard to see this 

explicitly, since the eigenfunctions of (5.4.9) cannot be found exactly. However for 

M = 3, the fact that the model is quasi-exactly solvable (QES) on the lines et± E N 

can be exploited. Furthermore, as explained above, any levels which coalesce and 

become complex on these lines must lie in the QES sector of the model. Near to the 

exceptional points on the QES lines it is therefore a good approximation to truncate 

the Hilbert space to that part of the QES sector which contains the coalescing levels. 

This will be used to see the Jordan blocks for the first quadratic and cubic exceptional 

points. 

To do this, begin with the Hamiltonian, H 0 , at the exceptional point, and restrict 

to the space of states which merge at this point. Then perturb about this point, 
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along the QES line by writing the full Hamiltonian, Hp as Hp = H0 + V. The aim is 

to expand Hp, using the wavefunctions of H0 as a basis, i.e. one needs to calculate 

(5.6.1) 

where { cPm, cPn} is the basis for the Jordan block form of H o, and { Jm, Jn} is the 

appropriate dual basis. The expectation is that the eigenvalues of Hmn, to leading 

order, will correspond to the eigenvalues of the the merging QES states. Before Hmn 

can be calculated, the appropriate basis for H0 must be found. A general method for 

finding such a basis, in cases where a suitable one-parameter family of eigenfunctions 

is known exactly as the exceptional point is approached is, outlined below 

5.6.1 Basis for an n x n Jordan block 

To illustrate a method that can be used to construct the basis of ann x n Jordan block, 

which arises when n eigenstates merge, the following toy model will be employed. 

Take ann x n matrix L, depending on one parameter t:: 

1 

e(2rrij /n) El/n 

e(4rrij/n)E2/n 

(5.6.2) 

, j = 1 .. . n. (5.6.3) 

When E = 0, L(t:) has a Jordan block form, but at this point all n eigenvectors 

'1/Jj become equal and so no longer form a basis. A new basis must therefore be 

constructed, consisting of the vectors '1/J(k), k = 0 ... n- 1 which satisfy 

L(t:)'lj/o) 1€=0 

L(t:)!j)kl 1€=0 

0 

'1/J(k-1) IE=O ' k = 1 ... n- 1. 

(5.6.4) 

(5.6.5) 
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For simplicity, begin with the eigenvector 'lj;n where 

(5.6.6) 

Clearly 'lj;(o) = '!j;n(E) satisfies the first condition (5.6.4) above. Choosing 'lj;(o) to be 

another 'lj;j here should work equally well but would need a different normalisation 

for 'lj;(k) below. 

Before the other basis vectors are constructed, it is convenient to introduce some 

notation. Let 

and 

n-1 d 
D = nEn-

dE 

- dL 
L=- dE. 

(5.6.7) 

(5.6.8) 

Note that L is linear in E so ~: = 0. D and L satisfy the following commutation 

relations 

Finally, define 

[D, Ek/n] 

[D,L] 

[D,L] 

nE(n-l)/n L 

0. 

(5.6.9) 

(5.6.10) 

(5.6.11) 

(5.6.12) 

By induction, it is easy to show that acting with Don (5.6.6) k times for 1 :::; k :::; 

n- 1 gives 

(5.6.13) 

When E = 0 this satisfies (5.6.5), so an appropriate basis is 

(5.6.14) 

and 

(5.6.15) 

for k = 1 ... , n -1. Recall that 'lj;n was chosen for simplicity here, but other '1/Jj should 

work equally well with some changes to normalisations. 
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5.6.2 A quadratic exceptional point 

The method outlined above will now be used to show the existence of a Jordan block 

in the Hamiltonian for the first quadratic exceptional point. 

Recall that the quadratic exceptional points occur at even values of J so let J = 2, 

and take +>. in (5.4.10) so J = a/4- >.j2. Then a = 2>. + 8 and the eigenvalue 

problem is now 

( 
d2 ).2 1 ) 

- dz2 + z6 + (2>. + 8)z2 + z2 4 + E 7/J = 0. (5.6.16) 

In the a± notation from (5.4.1), this corresponds to a+ = ~(>.+I) and a_ = 1/2. 

Let ). = 2E - 1, then the exceptional point occurs when E = 0. This is the point at 

which two levels merge and the Hamiltonian can be written in a Jordan block form. 

At this point the recursion relation for F{1 , (5.4.12), becomes 

Pn = -EPn-1 + 16(3- n)(n- I)(n + 2E- 2)Pn-2 (5.6.17) 

which terminates when n = 3. The energy eigenvalues of the two QES levels are 

given by the roots of P2 : E± = ±ivf:32E = ±4~. The corresponding eigenstates, 

from (5.4.10), are 

(5.6.18) 

where W ± = 7/J~q.( 5 . 4 .10) IE± and a is some normalisation constant to be determined 

later. The Jordan form of the Hamiltonian can be seen by working with the basis 

[129] 

(5.6.19) 

with b another normalisation constant. The unperturbed Hamiltonian is 

d2 3 2 6 
Ho = --2 + - 2 + 6z + z (5.6.20) 

dz 4z 

and in order to satisfy the requirements H0¢(o) = 0 and H0qPl = c/J(o), b is fixed to 

be b = - 4~. Note, however, that this basis is not unique as the basis { a¢(o), a¢(ll + 
,B¢(0)} also satisfies the Jordan block constraints for any constants a and ,6. The 

general Jordan basis, in this case, is therefore given by 

(5.6.21) 

(5.6.22) 
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The integrals I, ¢m¢n dz, { m, n} E {0, 1 }, must now be calculated in order to fix 

these constants and to identify the relevant dual basis { ¢m, ¢n}, which must satisfy 

J ¢ 0¢;0 dz = J ¢ 1¢ 1 dz = 1 and J ¢0¢1 dz = J ¢ 1¢0 dz = 0. The contour. here 
')' ')' ')' ')' ' 

and in subsequent calculations, is taken to be 1 = -1-l + /o +/I, where l±(t) = 

texp(±in/4), E::; t::; oo, /o = Eeit, -n/4::; t::; n/4 and Eisa small positive number 

which avoids any singularities at z = 0. The integrals are given by 

~ c/Joc/Jodz 

~ c/Joc/J1 dz 

~ ¢I¢I dz 

-a2 ~ ez
4

12z3 dz = 0 (5.6.23) 

~ ez
4

/
2 (-a:z- ia;3z3

) dz =- i~
2 

V'hr (5.6.24) 

~ ez4/2 ( _ 1~: _ ia;z + ;32z3) == ~ (;'JV'hr _ Z~7f) (5.6_25) 

Fixing I, ¢ 1¢1 dz = 0 sets ,6 to 

;3 = i; {% (5.6.26) 

and the requirement that I, ¢0¢ 1 dz = 1 sets a to 

( 8) 1/4 
a= (1 + i) :; (5.6.27) 

- -
The basis is now fixed and the dual basis can be taken to be ¢0 == ¢1 and ¢ 1 = ¢0 . 

The full Hamiltonian is Hp = H0 + V where V = 4€(;;-1) + 4Ez2
, so H mn must now 

be calculated, where 

(¢miHplc/Jn) (5.6.28) 

(¢miHolc/Jn) + 4E(E- 1)(¢mlz-2 lc/Jn) + 4E(¢mlz2 lc/Jn) 

with {¢m, ¢n} = {¢0 , ¢1} from above. The aim here is to find the eigenvalues of Hp, 

to leading order only. If (¢1IVI¢o) "' a 10 E, for some coefficient a 10 then to leading 

order Ep;± ~ ±fo!OE, so no other matrix elements need to be considered. This is the 

case here as (¢11VI¢0 ), for V = 4€(;;-1) + 4Ez2 is given by 

(5.6.29) 

Therefore, to leading order 

(5.6.30) 

which are equal to the QES eigenvalues E±, as expected. 
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5.6.3 A cubic exceptional point 

The first cubic exceptional point occurs when J = 3 and o: = 2,\ + 12. In the o:± 

notation, this corresponds to (o:+, o:_) = (1 + .A/2, 1), but in table 5.1 the position of 

the first cusp is given as (o:+, o:_) = (1/4, 1) (note o:+ and o:_ have been exchanged 

here using the >. ----+ - >. symmetry). If >. = 2E - 3/2, this point then corresponds to 

f = 0. The eigenvalue problem, in terms off is 

( 
d2 ( 4f - 2) ( 4f - 4) ) 

- dz2 + 4z2 + ( 4f + 9)z2 + z6 + E ·1/J = 0 (5.6.31) 

and the recursion relation for Pn is 

Pn = -EPn-1 + 16(4- n)(n- 1)(n + 2f- 5/2)Pn-2· (5.6.32) 

The roots of P3 give the energy eigenvalues of the three QES levels: E0 = 0, E± = 

±8v'=2f. The corresponding eigenstates are 

\llo ez4j4Z2E-la (1 + 2z4 ) 
4f + 1 

(5.6.33) 

z4/4 2E-l (1 4v'=2fz2 \ll± = e z a =F ----
4E ~ 1 

2z
4 

) 

4f- 1 

where a is some normalisation to be fixed later. Note that when f = 0 the 3 QES 

eigenstates above merge and so there is only one known eigenstate at this point, 

namely 

\llo/E=O =a ez
4

/
4 

( l + 2z3
) . (5.6.34) 

Moving away from the cusp, along the QES line, the perturbed Hamiltonian would 

correspond to a toy model matrix of the form 

L(E) ~ c~2 E~2 n (5.6.35) 

This is not the form discussed earlier in section 5.6.1 and in fact, to use the method 

described there to find the Jordan basis one would need to know the eigenfunctions 

of the Hamiltonian along the line perpendicular to this QES line. Unfortunately, as 

these functions are not known analytically the basis functions will have to be found 

by solving the constraints directly. The relevant basis ¢0 , (PI and ¢2 must satisfy 

Ho¢o 0 

(5.6.36) 
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where H 0 is the Hamiltonian at the cusp 

d2 6 2 2 
H0 = -- + z + 9z + -. 

dz 2 z2 
(5.6.37) 

Note that H 0 'lloiE=O = 0 so one can take ¢o = 'llolt=O· Then solving (5.6.36) for ¢ 1 

and ¢2 , using maple, gives 

(5.6.38) 

with a, b and c constants. These are not the most general solutions to (5.6.36) as a 

term proportional to e-z
4

/ 4 can be added to both but as this term does not satisfy 

the boundary conditions it is not included here. 

Now that a basis has been constructed, the corresponding dual basis, ¢0 , ¢1 and 

¢2 , must be found which satisfies 

l ¢i¢i dz 1 , for i = 0, 1, 2 

l ¢i¢j dz 0 , for i =/= j. (5.6.39) 

From [129] this dual basis is expected to be ¢;0 = ¢2 , ¢;1 = ¢1 and ¢;2 = ¢0 and this is 

supported by the fact that J, ¢0¢0 dz = J, ¢0¢ 1 dz = 0 and J, ¢ 1¢ 1 dz ex a 2
. Fixing 

J, ¢ 2¢ 2 dz = 0 and J, ¢ 1¢2 dz = 0 constrains the coefficients b and c to be 

b 

c = 

a?T 

16f(3/4)2 

a(37r2 - 8r(3/4)4
) 

512f(3/4)4 

Then requiring J, ¢ 1¢ 1 dz = J, ¢0¢ 2 dz = 1 fixes a2
: 

Choosing the root with positive real part for a, the basis is fixed to be 

¢o = ...:______-====-- e - + 2z 
(1 - i)27 /8 z4/4 ( 1 3) 

y'rill z 

(5.6.40) 

(5.6.41) 

(i- 1)27/8 ez4/4 (~- 8zf (~) 2 + 27rz3) (5.6.42) 
16f (~) 5/2 z 4 

(1- i)27/8 ez4/4 (24f (~)4 + 37r2- 167Tf (~)2 z + 67T2Z3 -16f (~)4 z3) 
512r(~) 912 z 4 4 
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- - -
with the dual basis c/Jo = c/J2, cP1 = c/Jl and cP2 = c/Jo. 

As in the quadratic case, not all matrix elements need to be calculated in order 

to find the eigenvalues to leading order. If (¢2 1VI¢o) ""a20 t: then the eigenvalues are 

given by this alone: 

Ep;O ~ 0 + O(t:) 

Ep;± ~ ±J2a10t: + O(t:). 

(5.6.43) 

(5.6.44) 

(5.6.45) 

One should begin, therefore, by calculating (¢2 IVI¢o) which, for V = 4€:;-6€ + 4t:z2 , 

is given by 

(¢,1VI</>o) ~ 12~:;: 
3f 4 

(5.6.46) 

Since this is of order t:2, ( ¢11 VI ¢o) = ( ¢21 VI cP1) is also needed: 

(5.6.47) 

The eigenvalues can now be written down as 

Ep;O ~ O(t:) 

Ep;± ~ ±8iJ2E + O(t:) (5.6.48) 

which for small f correspond to the QES eigenvalues given above. 

To investigate the shape of this cusp it is also necessary to perturb away from the 

exceptional point in the direction perpendicular to the QES line, i.e. along TJ where 

o: = -4TJ + 9 and ,\ = 2TJ- 3/2, or o:+ = 1/4 and o:_ = -TJ + 1. The Hamiltonian is 

now 
d2 (2n- 2)(2TJ- 1) 

H ' = - -·- + z6 + ( -4TJ + 9)z2 + -·1
------'-----

P dz2 z2 
(5.6.49) 

which will be considered as a perturbation of H0 , Hp' = H0 + V', with V' = -4rJz2 + 
477

:;
677

. The matrix element (¢2 IV'I¢0 ) is found to be: 

(5.6.50) 
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and since this is of order 'TJ there is no need to calculate any more terms to find the 

eigenvalues, which are given by 

~ 27r ~ 1/3 2/3 . -
( ) 

1/3 

Ep';j~4 -r(
3
l

4
)2 e 3 'TJ +O(ry ),fory-0,1,2. (5.6.51) 

A matrix which has eigenvalues (5.6.48) and (5.6.51) in the limits 'TJ -----> 0 and 

E -----> 0 respectively, to leading order is 

(5.6.52) 

This has the characteristic polynomial X 3 + 128t::X + /(;~~)2 = 0. Now the curve of 

exceptional points occurs when dX I dE -----> oo (or equivalently dX I dry -----> oo). Since 

dX -128X 

dt:: 3X2 + 128t:: 
(5.6.53) 

the requirement dX I dt:: -----> oo fixes 

X= ±v-1~8t. (5.6.54) 

Substituting this into the characteristic polynomial above and restricting to E :::; 0 

gives the following relation between 'TJ and t::: 

(5.6.55) 

For E > 0 the relation (5.6.54) is not real indicating that there are no exceptional 

points in this region, which matches with the numerical results. In terms of the a± 

notation, a+ = E + 114 and a_ = -ry + 1 so this relation becomes: 

(5.6.56) 

which is valid for a_ close to 1 and 0 < < a+ :::; 1 I 4. 

A comparison between the prediction (5.6.56) and numerical data is shown in 

figure 5. 7. A surface plot of the energy levels in the vicinity of this cusp, given by 

solutions to the characteristic polynomial above, is shown in figure 5.6, along with 

the shape of the cusp given by (5.6.56). 
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Figure 5.7: The shape of the cusp forM= 3. The crosses are the prediction (5.6.56) 

and the solid line is the numerical result. 

5.7 Numerical results for 1 < M < 3 

Having established the existence of quadratic and cubic exceptional points at M = 3, 

the situation at other values of lvf will now be explored. There is a theorem, due 

to Whitney [134] , which states that fold and cusp singularities (corresponding to the 

curves of exceptional points seen at M = 3) are the only singularities that are stable 

under perturbation, so this pattern of cusped lines must persist, at least while M is 

close to 3. Recall also that protected zero-energy levels lie on the lines a± = n for all 

values of M. However, away from M = 3 quasi-exact solvability is lost , and so one 

of the properties which confined the cusps at M = 3 to the protected lines a± = n , 

namely the symmetry of the set of merging levels under E ~ -E, may no longer 

hold. 

Figures 5.8 , 5.9 and 5.10 show the cusped lines forM= 2, 1.5 and 1.3. The plots 

were obtained by a direct numerical solution of the ODE. 

As predicted, the overall pattern remains the same, but the cusps move away from 

the protected zero-energy lines. The points where the outermost cusped line touches 

the supersymmetric zero-energy lines a± = 0 are known exactly, from (5.4.8). As M 

decreases from 3, they move down from the midpoints between a'f = nand a'f = n+ 1 

along the lines a± = 0. At the same time, the numerical data appears to show the 
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Figure 5.8: Cusps forM= 2. 
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Figure 5.9: Cusps for M = 1.5. 
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cusps moving upwards , at least on the rescaled coordinates of the plots, which keep 

the lines of protected zero-energy levels at constant locations. To investigate this 

further , the next section explores the pattern of lines for NI = 1 +, exploiting the fact 

that for M = 1 the problem can be solved exactly. 
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Figure 5.10: Cusps for M = 1.3. 

5.8 Perturbation theory about M = 1 

5.8.1 Exceptional points via near-degenerate perturbation 

theory 

Return now to the original formulation of the eigenvalue problem, namely 

(5.8.1) 

where 

(5.8.2) 

For NI near 1, the contour C can run along the real axis for lxl -t oo, dipping just 

below it at the origin. This problem can be solved exactly for M = 1 - it is the 

PI-symmetric simple harmonic oscillator [135, 65] and the spectrum is entirely real. 

(Note, for ..\2 
- ~ =/= 0 the reality of the spectrum is not completely trivial , owing to 

the departure of the quantisation contour from the real axis near the origin.) As M 

increases above 1, pairs of eigenvalues can become complex; as discussed earlier, this 

must be preceded by the coincidence of two real eigenvalues and so the first complex 

eigenvalues will be found at points in the (2>., a) plane at which the spectrum had 

degeneracies for M = 1. The aim here is to investigate exactly how this occurs. 

In [123] , Bender et al. studied the special case of a = ..\2 
- ~ = 0, using the 

exactly-known M = 1 eigenfunctions In), n = 0, 1, 2... . The full Hilbert space 
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was truncated to the subspace spanned by l2n - 1) and l2n), and HM expanded 

within that subspace about HM=l· Diagonalising the resulting 2 x 2 matrix allowed 

an approximation to the eigenvalues of H M to be found for lvf near to 1. However, 

as shown in [136], this approximation predicts level-merging for both signs of the 

perturbation rather than the one sign actually observed, and when applied to the 

pair of levels l2n) and l2n + 1), it predicts that they too will merge, contrary to the 

actual behaviour of the model. These problems can be traced to the fact that the 

energy levels at M = 1 and a= .\2
- ~ = 0 are equally spaced, making the truncation 

to the subspace spanned by l2n- 1) and l2n) unjustified. 

For the more general Hamiltonian (5.8.2) the presence of.\ prevents this problem, 

as .\ can be tuned so as to make a couple of levels very close to each other relative to 

all of the rest. Truncation to these two levels will then yield a good approximation 

to their behaviour for M close to 1. To see how a reliable prediction of exceptional 

points can emerge from this approach, it is worth examining a simple 2 x 2 example 

which illustrates the main features. 

Consider the 'unperturbed' Hamiltonian 

(5.8.3) 

with exactly-known eigenvalues ±27], and add to it the perturbation 

(5.8.4) 

Here E is the perturbing parameter (corresponding toM -I in the full problem) and 

the factors of l/7] capture the fact that nearby levels in the unperturbed problem 

interact more strongly as they approach each other. Then Hl+E := H1 + V:, has 

eigenvalues 

(5.8.5) 

and there is an exceptional point for just one sign of the perturbing parameter, at 

E = 772
. The singular nature of the 7] -----> 0 limit in this presentation of the Hamiltonian 

makes it hard to see the emergence of the Jordan block. For this, as in [130], define 

a pair of matrices 

(5.8.6) 
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where q2 = 2iE/TJ. Then Hl+f is similar to 

(5.8.7) 

which, at TJ = 0, has the expected perturbed Jordan block form. 

Returning to the main problem, at !VI= 1 the full Hamiltonian is 

(5.8.8) 

With the given boundary conditions, H 1 has eigenfunctions 

~±(x) = J2Jnf x 112±>-e-x2
2 

L±>-(x2 ), n = 0, 1,.... (5.8.9) 
'Pn y'(1-e'f27ri.A)f(±-X+n+1) n 

where L~ are the Laguerre polynomials, and the normalisation prefactor is taken 

from [137]. The corresponding eigenvalues are 

E"/: = -oo + 4n + 2 ± 2,\ . (5.8.10) 

A degenerate eigenvalue requires E-:; = E~ for some n and rn, which amounts to 

m-n=A. (5.8.11) 

Thus the spectrum has degeneracies on the vertical lines ,\ E Z in the (2,\, oo) plane, 

and for these values of ,\ infinitely-many pairs of eigenfunctions, ¢~ and ¢-;;1 , are 

proportional to one other. For ,\ = q, where q is a non-negative integer, the normali

sation in (5.8.9) is singular. Removing the singular term (1- e±21riq) and writing the 

Laguerre polynomials in terms of gamma functions 

£f3(x)=~(-1)k r(n+,6+1) xk 
n ~ r(,B + k + 1)r(n- k + 1)r(k + 1) 

0 

k=O 

(5.8.12) 

it is easily shown that ¢;;+q = ( -1 )q¢:, for p any other non-negative integer. Since 

¢~ -----t ¢;; when ,\ -----t -,\, it also follows that ¢:+q ex¢;; when ,\ = -q. 

In order to find the eigenvalues of H 11I for M = 1 + E, the method of [123] 1s 

followed and HM = Hl+f is treated in the basis of eigenfunctions of H 1 by writing it 

as 

(5.8.13) 
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where H 1 is given in (5.8.8) and 

(5.8.14) 

The matrix elements of 1/,o in the truncated basis of H 1 eigenfunctions were found 

exactly by Millican-Slater [137]. The results of his calculation are recorded here: The 

matrix element (¢~I ( ix) 2M I ¢;t;) is given by 

(¢~l(ix) 2MI¢~(x)) = 

(cos(Jvhr) + sin(A17r) cot(A7r)) ( -M)n(A + 1)m x 
Jn!rn!f(A + rn + 1)f(A + n + 1) 

(5.8.15) 

f(A + M + 1)3F2 ( -rn, A+ A;J + 1, 1 + 111; A+ 1, 1 + A;J- n; 1) 

in terms of the hypergeometric function 3 F2 and the Pochhammer symbol (a)n, de

fined for positive integer n as (a)n := a( a+ 1)(a + 2) ... (a+ n- 1) and (a) 0 := 1. 

The corresponding matrix element for ¢;; can be found by sending A -----+ -A. Note, 

when M = 1 this hypergeometric functions is not defined for all n and rn so the 

result for !VI = 1 cannot be read off from the above. This becomes clear when the 

hypergeometric function AFB( -rn, a 2 , ... , aA; b1 , b2 , ••• , bE; z) is written in terms of 

the Pochhammer symbol 

Note that if a is a negative integer, -n, then 

( -1)kn! 
( -n )k = ( n _ k)! if n 2': k 

0 ifn<k 

(5.8.16) 

(5.8.17) 

(5.8.18) 

so (5.8.16) is not well defined if one of the bi is negative and -bi < rn. Therefore, the 

hypergeometric function in (5.8.15) is undefined forM= 1 and n- 2 < rn. However, 

for in- rnl 2': 2 the symmetry of the inner products inn and rn can be used to avoid 

this problem. In these cases, when A;J = 1, the (- Jv!)n term in the expressions above 

becomes ( -1 )n = 0 so the inner products are zero. For n = rn and n = rn ± 1, by 

taking the limit !VI-----+ 1 in (5.8.15) it can be shown [137] that the only non-zero inner 

products for A;J = 1 are 

(¢~ (x) lx2 1¢~ (x)) 

(¢~(x)lx21¢~(x)) 

1 +A+ 2n 

1- A+ 2n 

(5.8.19) 

(5.8.20) 
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and 

I n + 1 (.\- n) 
Vn+.\+1 

(5.8.21) 

. I n + 1 
v-n---.\-+-1 ( -.\- n). (5.8.22) 

The matrix element (¢~(x)J(ix) 2MJ¢~(x)) is given by 

(¢~(x)J(ix)2MJ¢~(x)) = i sin(M1r)(1- .\)m(.\- M)nf(M + 1) 
I sin(7r.\)jJr(1- .\ + m)r(1 + .\ + n)m!n! (5.8.23) 

x 3F2 ( -m, 1 + M, !1.1 + 1 - .\; 1 - .\, M + 1 - .\- n; 1). 

which, unlike (5.8.15), is always well defined at M = 1. Expanding the matrix 

elements to leading order and re-diagonalising the resulting 2 x 2 matrix of Hl+E will 

then give the approximate energy levels. 

5.8.2 Perturbative locations of the exceptional points 

Now set .\ = q + rJ and fvf = 1 + E. It will also be assumed that q :::;:: 0, as results 

for negative q are easily restored using the .\ -----+ -.\ symmetry of the problem. For 

small values of TJ, the pairs of levels { ¢;, ¢;+q}, p :::;:: 0, are near degenerate, making 

the truncation of the Hamiltonian to the 2 x 2 blocks spanned by these two states 

a good approximation. To simplify the notation, fix the integer p :::;:: 0 and denote 

the corresponding basis by { q,+, q_,-} = { ¢;, ¢;+q}, with matrix elements Hab = 
(¢0 JHMJ¢b), where a, bE { +,-}. Recalling that HM = H1 - x 2

- (ix)2+2E- o:(ix)E 

the matrix elements H++' H+- and H __ can be easily written down, using (5.8.15), 

(5.8.19), (5.8.20) and (5.8.23), and noting that 

(¢+JHIJ¢+) 

(¢-JHIJ¢-) 

(¢+ JH1J¢-) 

4p + 2q + 2TJ + 2 

4p + 2q - 2TJ + 2 

(¢-JHIJ¢+) = 0. 

(5.8.24) 

(5.8.25) 

(5.8.26) 

Expanding in E and TJ and keeping terms proportional to T}, E/TJ, E and E2 /TJ yields 

H ++ ~ 4p + 2q + 2 - a + ( 2p + q + 1 - ~) ~ + 2TJ 

+ ( ( 2p + q + 1 - ~) 1/J (p + q + 1) + 2p + 2) E 

+ ( ( 2p + q + 1 - ~) 1/J (p + q + 1) + 2p + 1) ~ ; 
(5.8.27) 
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H _ _ ~ 4p + 2q + 2 - o: - ( 2p + q + 1 - ~) ~ - 2TJ 

+ ( ( 2p + q + 1- ~) 1/J(p + 1) + 2p + 2q + 2) E 

( ( 2p + q + 1 - ~) 1/J (p + q + 1) + 2p + 1) ~ ; 

H+- ~ ~~~ [(2p+q+ 1- ~) E 
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(5.8.28) 

+ (~ ( 2p + q + 1- ~) (1/J(p + q + 1) -1/J(p + 1))- q) ETJ (5.8.29) 

+ ( ( 2p + q + 1 - ~) 1/J (p + q + 1) + 2p + 1) E2
] 

where 1/J(z) = f'(z)/f(z). Details of this expansion are given in appendix A. This 

matrix can now be diagonalised to find approximations to the eigenvalues E±f> .. =q+ryJ: 

~ 4p + 2q + 2 - 0: + ( 2p + q + 2 

+ ~(4p+2q+2-o:)(1/J(p+q+1)+'1j;(p+1)))E (5.8.30) 

± [(8p + 4q + 4- 2o:)E + ((8p + 4q + 4- o:)'l/J(p + q + 1) 

+8p + 4) E2 + ( ( 4p + 2q + 2 - 0:) ( 1/J(p + q + 1) - 1/J(p + 1)) 

-4q) ETJ + 47]2 
] 

1/2 

Having obtained the approximate energy levels, exceptional points can be identi

fied as lines on the (2.\, o:) plane where the argument of the square root in (5.8.30) 

vanishes. The approximations to these curves for both E±>..=-q-
17 

and E±>..=q+ry are 

plotted in figures 5.11, 5.12, 5.13, and 5.14, for E = 0.005, 0.01, 0.02 and 0.035 re

spectively. Each shows o: against 2.\ for fixed E, taking q = 0, 1, 2 in E±>..=q+ry and 

E±>..=-q-ry above, and p = 0, 1 and 2. (The lines of exceptional points for other values 

of p and q lie outside the regions shown on the plots.) The dotted lines are the 

o:± E z+ lines, as previously. 

As M increases from 1, regions of complex eigenvalues open up from the lines 

.\ E Z, starting near the bottom of the spectrum. While the cusps cannot be seen 

within this approximation (since the truncation is to just two levels), the pictures 

are consistent with the numerical evidence in the last section that the cusps should 

escape towards o: = +oo as lvf decreases from 3 to 1. 
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Figure 5.11: Pert urbative PT boundary forM= 1.005. 
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Figure 5.12: Perturbative PT boundary for M = 1.01. 
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Figure 5.13: Perturbative PT boundary for M = 1.02. 
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Figure 5.14: Perturbative PT boundary for M = 1.035. 
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A clearer insight into the transitions near M = 1 can be gained by retaining only 

the leading terms of the matrix elements for small 77 and E, namely those proportional 

to 77 and E/77· For A = q + 77 and M = 1 + E as before, the matrix elements in the 

basis { ¢+, ,p-} = { ¢;, ¢;;+q} simplify to 

(5.8.31) 

where 

~ = ~0: - 2p - q - 1 . (5.8.32) 

The approximate eigenvalues are then 

(5.8.33) 

Apart from the overall shift by -2~ and the replacement of E by ~E, (5.8.31) and 

(5.8.33) have exactly the same form a.s the toy example (5.8.5). Exceptional points 

occur when the argument of the square root vanishes. At fixed E, and using the 

A ~ -A symmetry, the curves of exceptional points form the parabolas 

1 
0: = 4p + 2q + 2 + -(2A ± 2q) 2 

2E 
(5.8.34) 

on the (2A, o:) plane, where p and q are non-negative integers. Note the significant 

difference between the situations forE> 0 (Jv! > 1) and forE< 0 (M < 1): for given 

E > 0 the parabolas open upwards a.s in the figures above, and only a finite number of 

eigenvalues are predicted to be imaginary. On the other hand, for E < 0 the parabolas 

open downwards, and infinitely-many eigenvalues are imaginary. This provides an 

alternative understanding of the transition to infinitely-many complex eigenvalues as 

lv! dips below 1, first observed by Bender and Boettcher [63] foro:= 0, 2A = 1. 

Finally, in table 5.2 the various approximations used in this section are compared 

with numerical data obtained from a direct solution of the ordinary differential equa

tion. The numerical eigenvalues are denoted by Enum so it is against these values 

that the approximations are compared. The result using the truncation to two energy 

levels, but with no approximation of the matrix elements given in (5.8.15), (5.8.19), 

(5.8.20) and (5.8.23), is denoted by E1 and, as shown in table 5.2, this truncation 

gives a very good approximation to the numerical result Enum· The initial approxi

mation of this truncated result (including E and E2 /77 terms), given in (5.8.30) from 
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which the figures 5.11-5.14 are plotted, is denoted byE± and the final approximation 

(omitting theE and E2 /TJ terms), as shown in (5.8.33), is given by Eapprox· The table 

shows the comparison for various values of E, o: and TJ, for p = q = 0 (.\ = TJ) and 

p = 0, q = 1 (i.e. A= 1 + TJ). 

p=q=O 

E = 0.01, 0: = 0.9, TJ = 0.3 E = 0.001, 0: = 0.9, TJ = 0.01 

Enum 0.5012 1.727 1.15266823 1.05069482 

Ef 0.50122059 1.72733240 1.15266441 1.05069431 

E± 0.49858501 1.73506561 1.15269439 1.05067066 

Eapprox 0.48193851 1. 71806148 1.15099019 1.04900980 

p = 0, q = 1 

E = 0.01, 0: = 3.9, TJ = 0.01 E = 0.001, 0: = 3.5, TJ = 0.01 

Enum 0.07899348 0.18089945 0.46597112 0.53999606 

Ef 0.07897778 0.18034086 0.46596643 0.53999457 

E± 0.07913480 0.18078797 0.46595499 0.54000639 

Eapprox 0.05101020 0.14898979 0.46258342 0.53741657 

Table 5.2: Comparison of data 



Chapter 6 

Conclusion 

For perturbed boundary conformal field theories, little is known about the link be

tween the reflection factors and the corresponding conformal boundary conditions. 

In the bulk, this link can often be made with the TBA effective central charge, which 

allows the S matrix to be matched with the perturbed CFT. It has been proposed 

that the boundary analogue for this is given by the exact off-critical g-function, and 

in Chapter 4, this was tested for the purely elastic scattering theories related to the 

ADET Lie algebras. A special class of reflection factors was identified which, in the 

ultraviolet limit, were found to describe the reflection of massless particles off a wall 

with fixed boundary conditions li), matching the low-temperature vacua. 

A set of one-parameter families of reflection amplitudes was also proposed which, 

from the g-function calculations, appear to correspond to perturbations of Cardy 

boundary states, or of superpositions of such states, by relevant boundary operators, 

with each boundary flow ending at a fixed boundary condition li). 

While the results presented in Chapter 4 indicate that these models all have in

teresting interpretations as perturbed boundary conformal field theories, the checks 

performed so far should be considered as preliminary. In Section 4.10, the bound

ary bound-state spectrum was found for the three-state Potts model but it would 

be interesting to check this result using the boundary truncated conformal space ap

proach [78]. It remains an open problem to determine the boundary spectrum for 

each of the remaining AD ET models and also to fix completely the boundary UV /IR 

relations proposed in Section 4.9.2. Finally, it would be interesting to extend this 

work to other models, in particular to the Virasoro minimal models perturbed by the 
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1>13 operator. This perturbation leads to massless flows between the minimal models 

and knowledge of the exact g-function should allow conjectures to be made of the 

existence of flows between conformal boundary conditions of different minimal mod

els. The exact g-function described in Section 3.4 must be modified for these models 

as they are not purely elastic scattering theories. An attempt at this has been made 

in [138], but this suffers from the same problems as the original off-critical g-function 

and must be modified by some boundary independent terms, as described in Section 

3.4. 

In Chapter 5, the phase diagram of the three-parameter family of PT symmetric 

Hamiltonians HM,a,l was examined. At !vi = 3, this model is quasi-exactly solvable, 

which allowed the precise Jordan block structure, at the first quadratic and cubic 

points to be shown. The locations of the exceptional points were also explored away 

from M = 3, using both numerical and perturbative methods. 

These curves of exceptional points, for the !vi = 3 case, have also been found 

using the complex WKB method by Sorrell [133]. It would be interesting to see if 

this method reproduces the same pictures for other values of !11. It would also be 

interesting to investigate the phase diagram of this Hamiltonian when different lateral 

boundary conditions are imposed, i.e. when the quantisation contour tends to infinity 

in a different pair of Stokes sectors. 



Appendix A 

Perturbative expansion of the 

matrix elements 

In this appendix, the matrix elements 

sin((E + T7 + q)1r)f(p- 1- E)r(2 + q + T7 +E) 
H ++ = 2p + q + 1 + T7 + ----'-----. -----'-------------

sm((ry + q)1r)r( -1- E)r(1 + q + ry)p! 

H __ 

x 3F2 ( -p, 2 + E, 2 + q + T7 + E; 1 + q + ry, 2 + E- p; 1) (A.0.1) 
sin((ry + ~ + q)1r)f(p- ~)r(1 + q + T7 + ~) 

- a--~----~----~ 
sin((ry + q)1r)f( -~)f(1 + q + ry)p! 

x 3F2 ( -p, 1 + ~' 1 + q + T7 + ~; 1 + q + ry, 1 + ~- p; 1) 

. r(1-ry+p) 
- Z X 

r(1- q- ry)y'r(1- T7 + p)r(1 + q + P + ry)(p + q)!p! 

(
sin(m)r(p + q- 1 + T7- E)f(2 +E) 

I sin((ry + q)1r)lf(q- 1 + T7- E) 
x 3F2 ( -p- q, 2 + E, 2- q + E- ry; 1- q- ry, 2- q- p + E- ry; 1) (A.0.2) 
a sin(~)f(p + q + T7- ~)f(1 + ~) 

I sin((ry + q)1r)lf(q + T7- ~) 

x 3 F2 ( -p- q, 1 + ~' 1- q + ~- ry; 1- q- ry, 1- p- q + ~- ry; 1)) 

sin((E- '1]- q)1r)f(p + q- 1- E)r(2- q- T7 +E) 
2p + q + 1 - T7 - 0 

sin ( ( T7 + q) 7f) r( -1 - E) f ( 1 - q - T7 )(p + q)! 
x 3g( -p- q, 2 + E, 2- q- T7 + E; 1- q- ry, 2 + E- p- q; 1) (A.0.3) 

sin((ry- ~ + q)1r)r(p + q- ~)r(1- q- T7 + ~) _ a 2 2 2 

sin((ry + q)1r)f( -~)r(1- q- ry)(p + q)! 

( 
E E E ) x 3g -p- q, 1 + 2, 1 - q- T7 + 2; 1 - q- ry, 1 + 2 - p- q; 1 
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as described in section 5.8.2 are expanded in E and 7], including terms proportional 

to TJ, E/TJ, E and E2 /TJ. The final results are quoted in (5.8.27), (5.8.28) and (5.8.29). 

The first step, before expanding these matrix elements, is to simplify them. The 

hypergeometric functions, AFs( -m, a2, ... , aA; b1, ... , bs; z) with m a positive inte

ger, are defined in terms of the Pochhammer symbol (a) n 

(A.0.4) 

Note that when a is not a negative integer or zero, (a )n can be written in terms of r 

functions 

() 
~ r(a+n) 

a n- r(a) 

Substituting this into (A.0.4) then gives: 

(A.0.5) 

(A.0.6) 

Then using the recurrence relation of the r function, f(z + 1) == zf(z), several times 

it is easy to see that 
r(p + z1) r(z2- p) = ( _ 1)P. 

r(zi) r(z2) 
(A.0.7) 

The matrix elements (A.0.1), (A.0.2) and (A.0.3), can now be rewritten using 

(A.0.6), (A.0.7) and (5.8.17) as 

H++ 2p + q + 1 + TJ (A.0.8) 

+ sin((TJ+E)7r) ~ (-1)P+k r(2+E+k)r(2+q+T}+E+k) 
sin(TJ7r) ~ (p- k)!k! f(1 + q + TJ + k)f(2 + E- p + k) 

_ asin((TJ-~)n):t (-1)P+k r(1+~+k)f(1+q+TJ+~+k) 
sin(rJn) k=O (p- k)!k! r(1 + q + TJ + k)f(1 + ~- p + k) 

. r(1-TJ+P) 
1, X (A.0.9) 
Jr(1- TJ + p)r(1 + q + p + TJ)(p + q)!p! 

( 
sin(m) I: ( -1)P+q+k(p + q)! r(2 + E + k)f(2 + E- TJ- q + k) 

I sin(rJn)l k=O (p + q -k)!k! r(1- q- TJ + k)r(2 + E- TJ- q- p + k) 

sin(E;) p+q(-1)P+q+k(p+q)! r(1+~+k)f(1-q+~-TJ+k) ) 

- a I sin(rJn)l ~ (p + q- k)!k! r(1- q- TJ + k)f(1- q- p + ~- TJ + k) 
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H__ 2p + q + 1 - 'fJ (A.0.10) 

+ sin((TJ- E)1r) ~ ( -1)p+q+k r(2- q + 'f} + E + k)r(2 + E + k) 
sin(TJ7r) ~ (p + q- k)!k! f(1- q + 'f} + k)f(2- p- q + E + k) 

sin((TJ- -"-)7r) p+q ( -1)p+q+k r(1- q- 'f} + .". + k)f(1 + .". + k) 
-0' 2 ~ . 2 2 

sin(TJ7r) ~ (p + q- k)!k! r(1- q- 'fJ + k)r(1- p- q + ~ + k) 

A.0.3 Expanding H ++ 

Begin by expanding H++ (A.0.8), including terms in 'f}, E/TJ, E and E2 /TJ. The Taylor 

expansion of r(E +a) and 1/f(E +a) will be needed here: 

~ f(a)(1 + '!j;(a)E) 
1 

~ f(a) (1- 'lj;(a)E) (A.O.ll) 

where 'lj;(z) = f'(z)/r(z). It is useful to note that 1j;(1) = -{, where 1 ~ 0.5772 is 

Euler's constant, and 'lj;(z+ 1) = '!j;(z) + 1/ z. This is sufficient to expand most terms in 

(A.0.8), but more care must be taken over terms of the form f(E+a+k )/f(E+a-p+k) 

fork= 0, ... ,panda= 1, ... ,p. Now, fork = p + 1- a, ... ,p the expansion of 

these terms can be read off from (A.O.ll) but for k = 0, ... ,p- a this will not be 

well defined so a little more work is required. Let j = k + a, then 

I: f(E+a+k) t f(E+j) 
k=O r( E + a + k - p) - j=a r( E + j - p) 

p 

~ E L ( (j - 2) (j - 3) ... (j - p) + (j - 1) (j - 3) ... (j - p) + ... 
j=a 

+ (j - 1) (j - 2) ... (j - p + 1)) 

"', t. (r(p + 1- J) ~}}( -I)v+'-\~1 ~ ~)) 
and using the fact that 

fi j _ i = { u- 1)! 
i=lr(L-j) o 

for j = l- 1 

otherwise 

gives 

(A.0.12) 

(A.0.13) 

(A.0.14) 
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so, putting this all together, one finds 

p ) p-a L r(E+a+k ~Ez=(-1)p-k-a(k+a-1)!(p-k-a)! 
k=O r( E + a + k - p) k=O 

+ ~ ( (k+a-
1
)!)

1
(1+(7P(a+k)-7P(a-p+k))E). 

~ k+a-1-p. k=p+l-a 

(A.0.15) 

Substituting these results into (A.0.8) then gives 

H++ ~ 2p+q+1+ry+ (1+~) [(p+1)(p+q+1)(1+(7P(2+p)+I-1)E 

+ tP ( 2 + p + q) ( E + 7]) - tP( 1 + p + q) 7]) - p(p + q) ( 1 + ( tP ( 1 + p) + I) E 

) 
~(k+1)(1+q+k)l 

+ 7P(1 + p + q)(E + 77)- tP(P + q)ry + f::o (p _ k)(p _ k _ 1) (A.0.16) 

- " ( 1+ 2:,) [ ( 1 +4;( I+ p + q) ~ + ( 1/J(p + 1) + ') ~) - ~ ~ p ~ k l 
Finally, replacing the sums above with the following 

p-1 1 

L:p-k = 
k=O 

p-2 1 

I: (p - k )(p - k - 1) 
k=O 
p-2 k 

I: (p - k) (p - k - 1) -
k=O 

tP(P + 1) +I 

1 
1-

p 

P- 1 - tP(P) - I 

p-2 k2 

""""' = p2 ~ 1 + (1- 2p)(7P(p) +I) 
~ (p- k)(p- k- 1) 
k=O 

and keeping terms in 7], E/7], E and E2 /77 only, (A.0.16) reduces to 

H ++ ~ 4p + 2q + 2 - a + ( 2p + q + 1 - ~) ~ + 2ry 

+ ( ( 2p + q + 1 - ~) tP (p + q + 1) + 2p + 2) E 

+ ((2p+q+1-~)7P(p+q+1)+2p+1) ~ 
as advertised in (5.8.27). 

A.0.4 Expanding H __ 

(A.0.17) 

(A.0.18) 

(A.0.19) 

(A.0.20) 

(A.0.21) 

To expand the H __ term (A.0.10), (A.O.ll) and (A.0.15) are used, as above, but now 

more attention must also be paid to the r(2- q- 7J + E + k)/r(1- q- 7J + k) and 
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f(1- q- TJ + ~ + k)/f(1- q- TJ + k) terms. Taking the second of these, one would 

naively expand this, using (A.O.ll), as 

(A.0.22) 

however, this is not well defined for k = 0, ... , q -1 so more care must be taken here. 

First, replace k with j = q- k: 

then from the recurrence relation of the r function, it can be shown that 

j-1 
E 

f(1-TJ+-) 
2 

r(1- j- TJ +~)II(~- TJ- i) 
i=O 

j-1 

r(1-TJ) = r(1-j-TJ)II(-TJ-i). 

Using this, (A.0.23) can be rewritten as 

q-
1 r(1 - q- TJ + ~ + k) 

L r(1 - q - TJ + k) 
k=O 

i=O 

Then, expanding the r functions with (A.O.ll), and noting that 

j-1 ( ) 

II( 
E) f~+j E . 

i=1 
1 + 2i = r(j)f(1 + ~) >=:::; 

1 + 2(1/J(J) + !) 

one finds that 

q-
1 
f(1- q- TJ + ~ + k) TJ q ( E ) 2:: r(1-q-17~k) >=:::; TJ-~2: 1 +2(1/J(q-k)+,) · 

k=O 2 k=O 

(A.0.23) 

(A.0.24) 

(A.0.25) 

(A.0.26) 

(A.0.27) 

(A.0.28) 

Now' using the recurrence relation for the r function on the r ( 2- q- TJ- E + k) ;r ( 1 -

q- TJ + k) term gives 

(A.0.29) 
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and now (A.0.28) can be used to expand this as 

q-l q-l 

L r(2 - q - 1] + t + k) 1] I: 
r( k) :::::::- (1-q+k-7J+t)(1+(1f;(q-k)+1 )t). (A.o.3o) 

1-q-1]+ 1]-E 
k=O k=O 

Putting all this together gives 

~(q-j+1)(1-j) 
H__ ::::::: 2p + q + 1 -17 + t ~ ( .)( . 1) 

j=l p + J p + J-

( 

t 2 )p~2 

(k+1)(1-q+k) 
+ t - --:ry (p + q - k) (p + q - k - 1) 

k=q 

(A.0.31) 

- (1-~) [(p+q)(p-1J+p(1f;(1+p+q)+l+1f;(1+p))t) 

- (p + q + 1) ( 1 + p - 17 + ( 1 + p) ( 1j; ( 2 + p + q) + 1j; ( 2 + p) + 1 - 1) t)] 

[ 

q 1 ( 2) p+q-l 1 

+ ex ~ I: p + j + ~ - ~·ry I: p + q - k 
J=l k=q 

- ( 1 - 2~) ( 1 + ( 1j; ( 1 + p) + 1j; ( 1 + p + q) + I)~) l 
Now, the sums above are given by 

q 1 

L:p+j -
J=a 

q 1 

I: (p + j) (p + j - 1) 
J=a 

q ' 

I: (p + j) (: + j - 1) 
J=U 

'lj;(p + q + 1) -'lj;(p +a) 

1 1 
------
p+a-1 p+q 

p p 
-- +'1/J(p+q)- -~
p+q p+a-1 

-'lj;(p +a- 1) 
p2 p2 

q+1-a+ ---
p+a-1 p+q 

+(1- 2p)(1j;(p + q) + 'lj;(p +a- 1)) 

(A.0.32) 

(A.0.33) 

(A.0.34) 

(A.0.35) 

with a= 1, and those in (A.0.17) to (A.0.20). This gives the final result, as written 

in (5.8.28): 

H _ _ ::::::: 4p + 2q + 2 - ex - ( 2p + q + 1 - ~) ~ - 21] 

+ ( ( 2p + q + 1 - ~ ) 1j; (p + 1) + 2p + 2q + 2) t 

- ( ( 2p + q + 1 - ~) 1j; (p + q + 1) + 2p + 1) ~ . 

(A.0.36) 
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A.0.5 Expanding H +-

Finally, the H+- term (A.0.10) must be expanded. Here there are a couple of terms 

that need some attention. The first being of the form f(a + c:- TJ- q + k)jr(a + c:

TJ- p- q + k), where a= 1, 2. When k = p + q + 1- a, ... , p + q, the expansion of 

this can be read off easily from (A.0.11) so concentrate on k = 0, ... , p + q- a. Take 

the case k = 0, ... , q - a first: 

~ r( E - 'T} + a - q + k) q-a P 

6r(c:-TJ+a-p-q+k) - (-1)PLI1(-c:+TJ-a+q-k+i) 
k=O k=O i=l 

( 
_ 1 )P ~ f (- f + TJ - a + p + q - k + 1) 

6 ( ) (A.0.37) 
k=O f - f + TJ - a + q - k + 1 

~ ( -1 )P I: (p (; ~ : ~ ~) ~)! ( 1 - ( 'ljJ (p + q - a - k + 1) 
k=O 

-'1/J(q- a- k + 1))(c:- TJ)). 

Fork= q + 1- a, ... ,p + q- a, replace k with j = k +a- q and using (A.0.14): 

p~a r(c-'T}+a-q+k) ~ r(c:-'T}+j) 
6 r(c:- TJ +a- p -q + k) - 6 f(E- TJ + j- p) 

k=q+1-a J=l 
p 

~ (c:- TJ) L:(-1)p-j(j -1)!(p- j)! (A.0.38) 
j=l 

p+q-a [ ] 
~(c:-ry) L (-1)p+q-k-a(k+a-q-1)!(p+q-k-a)!. 

k=q+l-a 

The next term to look at is 1/r(1- q- TJ + k). Fork= q, ... ,p + q, (A.O.ll) gives 

the correct expansion so only k = 0, ... , q- 1 needs more consideration: 

q-l 1 q-l 1 r( 1 - TJ + k) 

I: r(1- q- TJ + k) =I: r(1- TJ + k) r(1- q- TJ + k)' 
k=O k=O 

(A.0.39) 

Now the expansion of 1/r(1- TJ + k) is perfectly straightforward fork= 0, ... , q- 1, 

and using (A.0.15) with a = 1 gives 

q-l q-l I: r(1- TJ + k) ~ TJ L:( -1)q-kk!(q- k- 1)!. 
k=Of( 1 -q-'T}+k) k=O 

Finally, the expansion of the prefact.or of H +- is 

r(1-TJ+p) 

Jr(1- TJ + p)r(1 + P + q + TJ)(p + q)!p! 
1 1 

~ ( )' (1- -2('1/J(p + q + 1) + '1/J(p + 1))TJ). 
p+q. 

(A.0.40) 

(A.0.41) 
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Gathering these terms together gives 

H+- ~ i 1~1 (1- ~(?jJ(p + q + 1) + ?jJ(p + 1))17) [(p + q + l)(p + 1) X 

( 1 + ( 7jJ (p + 2) + ·1/J (p + q + 2) ) E + ( 7jJ (p + 1) - 7jJ (p + 2) ) 17 + (I - 1 ) ( E - 17)) 

- p(p + q) ( 1 + (?jJ(p + 1) + ?jJ(p + q + l))E + (?jJ(p) -?jJ(p + 1))17 + I(E -17)) 

p~2 
( k + 1) ( k - q + 1) ( ) ~ ( k + 1) ( q - k - 1) 

+ ~ (p + q - k )(p + q - k - 1) E - 17 + b (p + q -k) (p + q - k - 1) 17 

Cl'( 1 E ) - - 1 + -?jJ(p + q + 1 )E + ?jJ(p + 1 )17 + ( ?jJ(p + 1) +I) (- - 17) 
2 2 2 

(A.0.42) 

p+q-1 q-1 l 1 E 1 
- --17 + 17 £; (p + q- k) (2 ) £; p + q- k . 

By replacing k with j = k - q in the 1st and 3rd sums and j = q- k in the 2nd 

and 4th above, their results can be read off from (A.0.17) to (A.0.20) and (A.0.32) 

to (A.0.35). This then simplifies to give 

H+- ~ ~~~ [(2p+q+ 1- ~) E 

+ (~ (2p + q + 1 ~ ~) (?j;(p + q + 1)- ?jJ(p + 1))- q) E17 (A.0.43) 

+ ( ( 2p + q + 1 - ~) 7jJ (p + q + 1) + 2p + 1) E2
] 

as written in (5.8.29). 
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