589 research outputs found

    Development of explosive welding procedures to fabricate channeled nozzle structures

    Get PDF
    Research was conducted to demonstrate the feasibility of fabricating a large contoured structure with complex internal channeling by explosive welding procedures. Structures or nozzles of this nature for wind tunnel applications were designed. Such nozzles vary widely in their complexity. However, in their simplest form, they consist of a grooved base section to which a cover sheet is attached to form a series of internal cooling passages. The cover sheet attachment can be accomplished in various ways: fusion welding, brazing, and diffusion welding. The cover sheet has also been electroformed in place. Of these fabrication methods, brazing has proved most successful in producing nozzles with complex contoured surfaces and a multiplicity of internal channels

    Molecular data suggest long-term in Situ Antarctic persistence within Antarctica's most speciose plant genus, Schistidium

    Get PDF
    © 2018 Biersma, Jackson, Stech, Griffiths, Linse and Convey. From glacial reconstructions it is clear that Antarctic terrestrial life must have been extremely limited throughout Quaternary glacial periods. In contrast, recent biological studies provide clear evidence for long-term in situ persistence throughout glacial times within most extant Antarctic faunal and several microbial groups. However, even now, the evolutionary history of the Antarctic flora-despite playing major role in Antarctic ecosystems-remains poorly studied. We assessed the diversity, richness and relative age divergences within Schistidium (Grimmiaceae, Bryophyta), the most species-rich plant genus in the Antarctic, as well as the plant genus containing most Antarctic endemic species. We applied phylogenetic and molecular dating methods based on nuclear ribosomal Internal Transcribed Spacer sequences, including all known Antarctic Schistidium species with available sample material. We additionally investigated the continent-wide genetic diversity within the most common Antarctic representative of the genus-the endemic species Schistidium antarctici-and performed preliminary phylogeographic analyses of the bipolar species Schistidium rivulare. Most previously described Antarctic Schistidium species were genetically distinct, confirming their specific status. Interspecific divergences of all species took place at least ~1 Mya, suggesting a likely in situ persistence in Antarctica for (at least) all endemic Schistidium species. The widespread endemic species, Schistidium antarctici, diverged from other Antarctic congeners in the late Miocene, thereby revealing the oldest extant plant species currently known in Antarctica, and providing increasing support for the hypothesis of vegetation survival through multiple glacial periods. Within S. antarctici we identified several distinct clades dividing the eastern Antarctic Peninsula and Scotia Arc islands from the western Antarctic Peninsula and all continental locations. This suggests that the mountainous spine on the Antarctic Peninsula forms a strong barrier to gene flow in this species, while increased genetic diversity in the northern Maritime Antarctic indicates likely glacial refugia in this area. This study provides an important first step toward assessing the diversity and evolutionary history of the most speciose moss genus in the Antarctic. The multi-million year presence of several endemic species contributes to studies on their adaptive potential to survive climate change over both historical and contemporary timescales.NERC STUDENTSHIP NE/K50094X/

    Low genetic variation between South American and Antarctic populations of the bank-forming moss Chorisodontium aciphyllum (Dicranaceae)

    Get PDF
    The Antarctic–South American bank-forming moss Chorisodontium aciphyllum is known for having the oldest sub-fossils of any extant plant in Antarctica as well as extreme survival abilities, making it a candidate species for possible long-term survival in Antarctica. Applying phylogeographic and population genetic methods using the plastid markers trnL-F and rps4 and the nuclear internal transcribed spacer, we investigated the genetic diversity within C. aciphyllum throughout its range. Low genetic variation was found in all loci, both between and within Antarctic and southern South American populations, suggesting a relatively recent (likely within the last million years) colonization of this moss to the Antarctic, as well as a likely severe bottleneck during Pleistocene glaciations in southern South America. We also performed a simple atmospheric transfer modeling approach to study potential colonization rates of small (microscopic/microbial) or spore-dispersed organisms (such as many mosses and lichens). These suggested that the northern Antarctic Peninsula shows potentially regular connectivity from southern South America, with air masses transferring, particularly southbound, between the two regions. We found elevated genetic variation of C. aciphyllum in Elephant Island, also the location of the oldest known moss banks (> 5500 years), suggesting this location to be a genetic hotspot for this species in the Antarctic.This research was funded by a Natural Environment Research Council (NERC) Ph.D. studentship (ref. NE/K50094X/1) to E.M.B. and supported by NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team

    On the fluid-fluid phase separation in charged-stabilized colloidal suspensions

    Full text link
    We develop a thermodynamic description of particles held at a fixed surface potential. This system is of particular interest in view of the continuing controversy over the possibility of a fluid-fluid phase separation in aqueous colloidal suspensions with monovalent counterions. The condition of fixed surface potential allows in a natural way to account for the colloidal charge renormalization. In a first approach, we assess the importance of the so called ``volume terms'', and find that in the absence of salt, charge renormalization is sufficient to stabilize suspension against a fluid-fluid phase separation. Presence of salt, on the other hand, is found to lead to an instability. A very strong dependence on the approximations used, however, puts the reality of this phase transition in a serious doubt. To further understand the nature of the instability we next study a Jellium-like approximation, which does not lead to a phase separation and produces a relatively accurate analytical equation of state for a deionized suspensions of highly charged colloidal spheres. A critical analysis of various theories of strongly asymmetric electrolytes is presented to asses their reliability as compared to the Monte Carlo simulations

    Global biogeographic patterns in bipolar moss species

    Get PDF
    A bipolar disjunction is an extreme, yet common, biogeographic pattern in non-vascular plants, yet its underlyingmechanisms (vicariance or long-distance dispersal), origin and timing remain poorly understood. Here, combining a large-scale population dataset and multiple dating analyses, we examine the biogeography of four bipolar Polytrichales mosses, common to the Holarctic (temperate and polar Northern Hemisphere regions) and the Antarctic region (Antarctic, sub-Antarctic, southern South America) and other Southern Hemisphere (SH) regions. Our data reveal contrasting patterns, for three species were of Holarctic origin, with subsequent dispersal to the SH, while one, currently a particularly common species in the Holarctic (Polytrichum juniperinum), diversified in the Antarctic region and from here colonized both the Holarctic and other SH regions. Our findings suggest long-distance dispersal as the driver of bipolar disjunctions. We find such inter-hemispheric dispersals are rare, occurring on multi-million-year timescales. High-altitude tropical populations did not act as trans-equatorial 'steppingstones', but rather were derived from later dispersal events. All arrivals to the Antarctic region occurred well before the Last Glacial Maximum and previous glaciations, suggesting that, despite the harsh climate during these past glacial maxima, plants have had a much longer presence in this southern region than previously thought.Peer reviewe

    Molecular Dynamics Simulation of Semiflexible Polyampholyte Brushes - The Effect of Charged Monomers Sequence

    Full text link
    Planar brushes formed by end-grafted semiflexible polyampholyte chains, each chain containing equal number of positively and negatively charged monomers is studied using molecular dynamics simulations. Keeping the length of the chains fixed, dependence of the average brush thickness and equilibrium statistics of the brush conformations on the grafting density and the salt concentration are obtained with various sequences of charged monomers. When similarly charged monomers of the chains are arranged in longer blocks, the average brush thickness is smaller and dependence of brush properties on the grafting density and the salt concentration is stronger. With such long blocks of similarly charged monomers, the anchored chains bond to each other in the vicinity of the grafting surface at low grafting densities and buckle toward the grafting surface at high grafting densities.Comment: 8 pages,7 figure

    Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions are commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing solution of the nonlinear PB equation, the cell model neglects microion-induced correlations between macroions, precluding modeling of macroion ordering phenomena. An alternative approach, avoiding artificial constraints of cell geometry, maps a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interactions. In practice, effective-interaction models are usually based on linear screening approximations, which can accurately describe nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions of nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modeling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate in predicting osmotic pressures of deionized suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions grows, leading predictions of the cell and effective-interaction models to deviate. No evidence is found for a liquid-vapour phase instability driven by monovalent microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed Matter on "Classical density functional theory methods in soft and hard matter

    Three-Particle Correlations in Simple Liquids

    Full text link
    We use video microscopy to follow the phase-space trajectory of a two-dimensional colloidal model liquid and calculate three-point correlation functions from the measured particle configurations. Approaching the fluid-solid transition by increasing the strength of the pair-interaction potential, one observes the gradual formation of a crystal-like local order due to triplet correlations, while being still deep inside the fluid phase. Furthermore, we show that in a strongly interacting system the Born-Green equation can be satisfied only with the full triplet correlation function but not with three-body distribution functions obtained from superposing pair-correlations (Kirkwood superposition approximation).Comment: 4 pages, submitted to PRL, experimental paper, 2nd version: Fig.1 and two new paragraphs have been adde

    Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer

    Get PDF
    A microfluidic mixer is applied to study the kinetics of calmodulin conformational changes upon Ca2+ binding. The device facilitates rapid, uniform mixing by decoupling hydrodynamic focusing from diffusive mixing and accesses time scales of tens of microseconds. The mixer is used in conjunction with multiphoton microscopy to examine the fast Ca2+-induced transitions of acrylodan-labeled calmodulin. We find that the kinetic rates of the conformational changes in two homologous globular domains differ by more than an order of magnitude. The characteristic time constants are ≈490 μs for the transitions in the C-terminal domain and ≈20 ms for those in the N-terminal domain of the protein. We discuss possible mechanisms for the two distinct events and the biological role of the stable intermediate, half-saturated calmodulin

    Autocatalytic amplification of Alzheimer-associated Aβ42 peptide aggregation in human cerebrospinal fluid

    Get PDF
    Alzheimer’s disease is linked to amyloid β (Aβ) peptide aggregation in the brain, and a detailed understanding of the molecular mechanism of Aβ aggregation may lead to improved diagnostics and therapeutics. While previous studies have been performed in pure buffer, we approach the mechanism in vivo using cerebrospinal fluid (CSF). We investigated the aggregation mechanism of Aβ42 in human CSF through kinetic experiments at several Aβ42 monomer concentrations (0.8–10 µM). The data were subjected to global kinetic analysis and found consistent with an aggregation mechanism involving secondary nucleation of monomers on the fibril surface. A mechanism only including primary nucleation was ruled out. We find that the aggregation process is composed of the same microscopic steps in CSF as in pure buffer, but the rate constant of secondary nucleation is decreased. Most importantly, the autocatalytic amplification of aggregate number through catalysis on the fibril surface is prevalent also in CSF
    • …
    corecore