We use video microscopy to follow the phase-space trajectory of a
two-dimensional colloidal model liquid and calculate three-point correlation
functions from the measured particle configurations. Approaching the
fluid-solid transition by increasing the strength of the pair-interaction
potential, one observes the gradual formation of a crystal-like local order due
to triplet correlations, while being still deep inside the fluid phase.
Furthermore, we show that in a strongly interacting system the Born-Green
equation can be satisfied only with the full triplet correlation function but
not with three-body distribution functions obtained from superposing
pair-correlations (Kirkwood superposition approximation).Comment: 4 pages, submitted to PRL, experimental paper, 2nd version: Fig.1 and
two new paragraphs have been adde