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Abstract: The Antarctic-South American bank-forming moss Chorisodontium aciphyllum is
known for having the oldest sub-fossils of any extant plant in Antarctica as well as
extreme survival abilities, making it a candidate species for possible long-term survival
in Antarctica. Applying phylogeographic and population genetic methods using the
plastid markers trnL-F and rps4 and the nuclear Internal Transcribed Spacer (ITS) we
investigated the genetic diversity within C. aciphyllum throughout its range. Low
genetic variation was found in all loci, both between and within Antarctic and southern
South American populations, suggesting a relatively recent (likely within the last million
years) colonization of this moss to the Antarctic, as well as a likely severe bottleneck
during Pleistocene glaciations in southern South America. We also performed a simple
atmospheric transfer modeling approach to study potential colonization rates of small
(microscopic/microbial) or spore-dispersed organisms (such as many mosses and
lichens). These suggested that the northern Antarctic Peninsula shows potentially
regular connectivity from southern South America, with air masses transferring,
particularly southbound, between the two regions. We found elevated genetic variation
of C. aciphyllum in Elephant Island, also the location of the oldest known moss banks
(>5500 years), suggesting this location to be a genetic hotspot for this species in the
Antarctic.
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Abstract 24 

 25 

The Antarctic-South American bank-forming moss Chorisodontium aciphyllum is known for having 26 

the oldest sub-fossils of any extant plant in Antarctica as well as extreme survival abilities, making it a 27 

candidate species for possible long-term survival in Antarctica. Applying phylogeographic and 28 

population genetic methods using the plastid markers trnL-F and rps4 and the nuclear Internal 29 

Transcribed Spacer (ITS) we investigated the genetic diversity within C. aciphyllum throughout its 30 
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range. Low genetic variation was found in all loci, both between and within Antarctic and southern 31 

South American populations, suggesting a relatively recent (likely within the last million years) 32 

colonization of this moss to the Antarctic, as well as a likely severe bottleneck during Pleistocene 33 

glaciations in southern South America. We also performed a simple atmospheric transfer modeling 34 

approach to study potential colonization rates of small (microscopic/microbial) or spore-dispersed 35 

organisms (such as many mosses and lichens). These suggested that the northern Antarctic Peninsula 36 

shows potentially regular connectivity from southern South America, with air masses transferring, 37 

particularly southbound, between the two regions. We found elevated genetic variation of C. 38 

aciphyllum in Elephant Island, also the location of the oldest known moss banks (>5500 years), 39 

suggesting this location to be a genetic hotspot for this species in the Antarctic.  40 

 41 
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Introduction 45 

 46 

The timing of origin of the contemporary Antarctic biota and understanding the connectivity of 47 

populations between southern South America and the Antarctic Peninsula have increasingly become 48 

central questions in Antarctic biogeographic studies (e.g. Allegrucci et al. 2006, 2012; Convey et al. 49 

2008, 2009b; Fraser et al. 2012). Ice-sheet modeling studies and glaciological reconstructions suggest 50 

the entire Antarctic continent, and in particular the low altitude and generally coastal areas occupied by 51 

the better developed terrestrial ecosystems present today, to have been almost fully covered by thick 52 

ice-sheets during the Last Glacial Maximum (LGM; ~18-20 ky BP), as well as previous Miocene and 53 

Pleistocene glaciations, implying that most contemporary terrestrial life could only have colonised 54 

Antarctica since the LGM. Conversely, recent molecular phylogeographic and classical biogeographic 55 

studies have overturned this long-held paradigm, strongly supporting a long-term persistence of 56 

Antarctica’s extant terrestrial biota, including many faunal as well as microbial groups, with estimated 57 

persistence ranging from hundreds of thousands to multi-million year timescales (e.g Chong et al. 58 

2015; Convey et al. 2008, 2009a; Convey and Stevens 2007; De Wever et al. 2009; Fraser et al. 2014; 59 

Iakovenko et al. 2015; McGaughran et al. 2010; Pisa et al. 2014; Stevens et al. 2006; Vyverman et al. 60 

2010).  61 

The origin of the Antarctic bryophytes, the dominant macroscopic flora on the continent, is less well 62 

understood. As with the other groups, Antarctic bryophytes have been widely thought to be recent 63 

arrivals in the Antarctic, a hypothesis that is consistent with several lines of evidence: their i) low 64 

endemicity (see discussion in Convey et al. 2008), ii) low species richness, iii) perceived potentially 65 

high dispersal ability through spore and other propagule production, and iv) distribution patterns, with 66 

most species restricted to the relatively mild maritime Antarctic, and very few restricted to the much 67 

harsher continental Antarctic (Ochyra et al. 2008). However, a recent population genetic study on the 68 

cosmopolitan moss Bryum argenteum Hedw. suggested a long-term persistence of this moss in the 69 

Antarctic (Peninsula and continent), identifying at least three separate colonisation events on very 70 

conservatively estimated multi-million-year timescales (~4.4, ~1.4 and ~0.6 Mya; Pisa et al. 2014; see 71 

also Hills et al. 2010). This first direct indication of long-term persistence implies that, perhaps, more 72 

extant Antarctic bryophytes have similarly had a long-term (pre-LGM) presence within Antarctica. 73 

High genetic variation amongst Antarctic populations of Polytrichum juniperinum Hedw. (Biersma et 74 



 4 

al. 2017) suggests this common Antarctic moss may also have had a long-term in situ persistence in the 75 

maritime Antarctic, although this requires further investigation. 76 

The oldest subfossils of any extant Antarctic moss species are of the bank-forming moss 77 

Chorisodontium aciphyllum (Hook. f. & Wils.) Broth. This moss is therefore a suitable candidate 78 

species to examine for evidence of long-term persistence in the Antarctic. Chorisodontium aciphyllum 79 

is a common moss in the sub- and maritime Antarctic (Antarctic Peninsula and Scotia Arc 80 

archipelagos). Its overall distribution includes southern South America (also including the Juan 81 

Fernandez Islands), the Falkland Islands, the Scotia Arc, the Antarctic Peninsula and associated 82 

islands, Tristan da Cunha, Amsterdam Island and the Kerguelen archipelago (Hyvönen, 1991; Ochyra 83 

et al. 2008, and references therein). New Zealand was previously also thought to be part of its range 84 

(Bartlett & Frahm, 1983), however a later consultation found the plant here to have been misidentified 85 

(Department of Conservation of New Zealand, 2013, see reference list for website link). The plant is 86 

thought to be sterile in the maritime Antarctic, but is known to locally produce sporophytes on sub-87 

Antarctic South Georgia (Ochyra et al. 2008), and further north in southern South America (Hyvönen, 88 

1991, Ochyra et al. 2008). 89 

C. aciphyllum forms banks often up to 1-2 m in depth, with the deepest banks known reaching a depth 90 

of almost 3 m on Elephant Island in the South Shetland Islands (Björck et al. 1991; Collins 1976a, 91 

1976b; Fenton 1980, 1982a; Fenton and Smith 1982; Smith 1972, 1979, 1996; Fig. 1). The bases of 1.5 92 

m deep peat banks at Signy Island (South Orkney Islands) and Elephant Island (South Shetland 93 

Islands), have been radiocarbon dated at ~5000 and 5500 years old, respectively (Björck et al. 1991; 94 

Fenton and Smith 1982), and deeper cores may potentially be older. 95 

In maritime Antarctic moss banks, the active layer depth is typically 30-50 cm, with depths below that 96 

being frozen in permafrost. The moss in these banks is therefore extremely well preserved physically or 97 

morphologically, and regrowth studies from a core obtained on Signy Island (South Orkney Islands) 98 

have revealed that old moss shoots deep within the peat banks are still viable and able to regrow after 99 

experimental thawing and supplying with water and light (Roads et al. 2014). New shoots of C. 100 

aciphyllum grew directly from existing gametophyte shoots (and not spores, which are not produced by 101 

this moss in the maritime Antarctic) at 110 cm depth in the core examined, a depth radio-carbon dated 102 

to 1533–1697 yrs BP, revealing the longest survival and viability of any bryophyte (or indeed 103 

multicellular eukaryotic organism) known. These observations suggest that mosses such as C. 104 
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aciphyllum have the potential to survive at least through shorter periods of ice extension, for instance 105 

the Little Ice Age (1550–1850 BC), such as are inferred in various studies of glacial extent over time 106 

and through palaeoclimate proxies in the Antarctic (Guglielmin et al. 2015; Hodgson and Convey 107 

2005). Whether they have the capability to persist similarly through entire glacial cycles appears a 108 

considerably greater challenge, but is at present unknown.  109 

These characteristics make C. aciphyllum a particularly interesting species to examine for clues of a 110 

possible long-term (hundreds of thousands to multi-million year timescales) Antarctic origin. Applying 111 

several widely-used genetic markers and Bayesian inference approaches, in this study we investigated 112 

the genetic variation between and within populations of C. aciphyllum throughout the full extent of its 113 

natural distribution in southern South America and Antarctica. Additionally, in order to further assess 114 

the connectivity of spore-dispersed organisms between South America and Antarctica we used 115 

atmospheric wind modeling techniques to study the relative frequency and direction of atmospheric 116 

transfer events between the regions. These analyses will increase our general understanding of the 117 

likely age of spore-dispersed organisms within Antarctica.  118 

 119 

Materials and methods  120 

 121 

Sampling and molecular methods 122 

Material was sampled throughout the natural range of C. aciphyllum from 25 herbarium and 77 fresh 123 

(sub-)samples (the latter included spatially separated subsamples taken from eight different locations 124 

on four different islands, as described below; see Table 1 and Fig. 2). Most of the fresh (frozen) 125 

samples of C. aciphyllum included in this study were collected recently from locations in the South 126 

Shetland Islands (Ardley Island and Elephant Island) and Anvers Island west of the Antarctic Peninsula 127 

(Norsel Point), as described in Royles et al. (2016). From these we sampled multiple shoots to 128 

investigate within-population variation. These samples were spatially separated by approximately 50-129 

300 m intervals (numbered 1-3), and from each sample several sub-samples were taken at a finer-scale 130 

interval of approximately 5 cm (letters A-E). Several shoots were taken per sub-sample. All herbarium 131 

samples originated from the British Antarctic Survey (BAS) Herbarium (herbarium code AAS). We 132 

also included several closely related species, taxonomically assigned to different Chorisodontium 133 

species: C. magellanicum (Card.) Bartr., C. lanigerum (Müll. Hal.) Broth., C. spegazzini (C. Müll.)., C. 134 
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dicranellatum (C. Müll.) Broth., C. sphagneticola Roiv., C. mittenii (C. Müll.) Broth. and C. setaceum 135 

(Bartr.) Bartr. 136 

DNA was extracted using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany), with use of 137 

mortar and pestle and liquid nitrogen, following the manufacturer’s instructions, and using one 138 

gametophyte shoot per sample. We amplified three commonly used markers for phylogenetic inference 139 

at the genus to population level (Stech and Quandt 2010): the nuclear Internal Transcribed Spacer (ITS) 140 

and the plastid markers trnL-F and rps4. Amplification was performed using the Taq PCR Core Kit 141 

(Qiagen GmbH, Hilden, Germany) with addition of Bovine Serum Albumin (BSA), checking the 142 

results using agarose gel electrophoresis. ITS was amplified using primer combinations ITS1 and ITS4 143 

(White et al. 1990) or ITS-A (Blattner 1999) and 25R (Stech 1999). Plastid markers trnL-F and rps4 144 

were amplified using primer combinations trnLF-c and trnLF-f (Taberlet et al. 1991) and trnS (Souza-145 

Chies et al. 1997) and rps 5’ (Nadot et al. 1994), respectively. An annealing temperature of 60°C was 146 

used for all amplifications, except for rps4, which ranged between 55-60°C. Forward and reverse 147 

sequencing was performed by LGC Genomics (Berlin, Germany), using the same primers as mentioned 148 

above. 149 

 150 

Molecular analyses 151 

All sequences were manually examined, with forward and reverse sequences assembled by Codoncode 152 

Aligner v.5.0.2 (CodonCode Corp., Dedham, MA). We included several Genbank sequences of all 153 

three regions derived from the same original specimens as outgroups in all alignments: Dicranoloma 154 

cylindrothecium (Mitt.) Sakurai. and D. robustum (Hook.f. & Wils.) Paris. (see Table 1). Additionally, 155 

as the above mentioned rps4 outgroup sequences were only partial, we included several other 156 

Dicranoloma sequences in the rps4 alignment (D. billardieri (Brid.) Paris., D. blumii (Nees) Paris.. and 157 

D. eucamptodontoides (Broth. & Geh.) Paris.), as well as extra Chorisodontium sequences (C. mittenii, 158 

and C. setaceum). In the trnL-F alignment, we added additional outgroup sequences (D. 159 

cylindrothecium and D. robustum, respectively) and two Chorisodontium sequences (C. mittenii and C. 160 

setaceum, respectively). Loci were aligned per locus using the Geneious aligner within Geneious 9.0.4 161 

(Biomatters, LTD, Auckland, NZ). Short, partially incomplete sections at the ends of each alignment 162 

were excluded. The numbers of variable and parsimony informative sites were calculated per locus in 163 

MEGA7 (Kumar et al. 2016) using ingroup sequences with Chorisodontium species only. 164 
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Bayesian analyses using MrBayes 3.2 (Ronquist et al. 2012) were performed on each locus separately. 165 

Nucleotide substitution models were selected according to the SPR tree topology search operation and 166 

AICc calculations as implemented by jModeltest-2.1.7 (Darriba et al. 2012) for each individual marker, 167 

resulting in the TIM2, TPM1uf and TPM3uf (n=6, rates=equal for all) for rps4, trnL-F and ITS, 168 

respectively. For the MrBayes analysis indels in ITS were coded in SeqState v1.0. (Simmons and 169 

Ochoterena 2000) using the simple indel coding. MrBayes runs of all markers were continued for 170 

1000000 generations, sampling every 1000, ensuring all parameters exceeded effective sample sizes 171 

(ESS) >200 and split frequencies reached values >0.01 using Tracer v.1.6 (Rambaut et al. 2014), and 172 

discarding the first 25% as burn-in. Maximum clade credibility trees with mean node heights were 173 

visualised using Figtree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). 174 

We examined phylogeographic structure within ingroup specimens with TCS networks produced for 175 

each locus using the program Popart (Leigh and Bryant 2015), using default settings. 176 

 177 

Aerial modeling 178 

The potential relative frequency of atmospheric dispersal events between different locations was 179 

evaluated using a method of following trajectories of air-mass movements from reconstructions of past 180 

atmospheric winds. Simplifying assumptions were made that (i) particles are blown by the wind 181 

without any independent movement (e.g. fall-out) and that (ii) there are no thresholds on survival in 182 

terms of environmental conditions such as temperature or humidity. For a given location of interest 183 

three-dimensional forward trajectories were calculated at daily intervals over a 10 y period from 1979. 184 

In other words, for every day, starting at a specified location, a calculation was conducted which 185 

estimates the path that a particle released at that location at midnight would follow if it were blown by 186 

the wind over the following two days. For the purpose of this study we used two different starting 187 

locations in the area of interest: one from southern South America (55°S, 67.5°W) and one in the South 188 

Shetland Islands (62.5°S, 57.5°W) in the maritime Antarctic. 189 

The atmospheric winds were taken from a reconstruction of past winds available from the European 190 

Centre for Medium-Range Weather Forecasts (ECMWF). The specific version used was ERA‐40 191 

(Uppala et al. 2005) and the post-1979 period was chosen, which is known to be more reliable due to 192 

the introduction of widespread data from satellites in late 1978 (Marshall 2003). The three-dimensional 193 

air mass trajectories were calculated from ERA-40 data using a service provided by the British 194 
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Atmospheric Data Centre (BADC) (available at http://badc.nerc.ac.uk/community/trajectory/). Density 195 

maps from these trajectories show the proportion (in %) of trajectories from a given location that pass 196 

within a 200 km radius of each grid point on the map.  197 

 198 

Results 199 

 200 

Molecular analyses 201 

Sequence lengths within rps4, trnL-F and ITS alignments ranged between 649-650 bp, 454-462 bp and 202 

744-777 bp (including outgroups), respectively. Variation between Chorisodontium species was low in 203 

all markers (including only Chorisodontium sequences: 2, 3 and 9 variable sites, and 2, 2 and 3 204 

parsimony informative sites in rps4, trnL-F and ITS, respectively). The Bayesian analyses resulted in 205 

well-supported phylogenic trees, with most ingroup (all Chorisodontium specimens) nodes receiving 206 

posterior probability (PP) values >0.95, and all had a minimum PP of 0.70 (Fig. 3a-c). Haplotype 207 

networks of each locus are shown next to each phylogenetic tree in Fig. 3.  208 

Both phylogenetic and haplotype analyses revealed that in the loci trnL-F and ITS (Figs 3b and c, 209 

respectively) Chorisodontium species other than C. aciphyllum were resolved together with C. 210 

aciphyllum specimens, suggesting that either very little variation exists in these markers for these taxa, 211 

or that the specimens were initially misidentified. In the trnL-F phylogenic tree specimens of the two 212 

neotropical species C. mittenii (AF435311) and C. setaceum (AF435312; this species is a likely 213 

synonym of C. wallisii (D Müll); Frahm 1989) were identical to C. aciphyllum. Similarly, in the ITS 214 

phylogeny specimens identified as the southern South American C. spegazzini (Chile 00523) and C. 215 

dicranellatum (Chile 00509 and 00511) were resolved together with C. aciphyllum specimens. 216 

Alternatively, in both trnL-F and ITS phylogenies (Figs. 3b and c, respectively) some specimens 217 

identified as C. aciphyllum (Chile 00504, 11472A, 02015) were resolved as sister-species or together 218 

with other Chorisodontium species, again suggesting these specimens were initially misidentified and 219 

represent different Chorisodontium species. 220 

All phylogenetic trees revealed a large polytomy of C. aciphyllum specimens, with very little (rps4 and 221 

ITS; Fig. 3a and c, respectively) or no (trnL-F; Figs. 3b) genetic variation amongst them. This 222 

polytomy included specimens from all populations and the entire geographic range of C. aciphyllum, 223 

and therefore revealed very little or no genetic variation within the species. 224 
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The ITS marker (Fig. 3c) revealed within-population variation in specimens derived from Elephant 225 

Island (South Shetland Islands): sample replicates (defined by the numbers between brackets behind 226 

samples in Fig. 3a-c) revealed variation between specimens sampled from the same 5 cm diameter 227 

plots in locations “1C”, “1D”, “2A” and “3B”. The variation between South Shetland Island samples 228 

included two nucleotide additions, situated in both ITS1 and ITS2 (for positions of the nucleotide 229 

additions in an alignment of Elephant Island samples see Fig. 4). The two added nucleotides were only 230 

found in Elephant Island samples, and were not present in any other locations of C. aciphyllum. 231 

 232 

Aerial modeling studies 233 

Two 95%-probability distribution figures were produced that show the relative connectivity between 234 

southern South America and the northern maritime Antarctic (Figs. 5a, b). These revealed that, given 235 

the assumptions (see methods), small particles transported via regional air masses can clearly cover 236 

long distances within a 24 h period. The figures also revealed a strong asymmetry in directional 237 

probability, revealing that aerial transfer from southern South America to the northern maritime 238 

Antarctic (Fig. 5a) is more likely than vice versa (Fig. 5b). Both dispersal density plots show the clear 239 

influence of the westerly winds prevailing in the region, and that west-to-east transport is much more 240 

likely than east-to-west. 241 

 242 

Discussion 243 

 244 

Within C. aciphyllum, all loci revealed little or no genetic variation between specimens sampled from 245 

geographically separate locations throughout the species’ natural distribution in southern South 246 

America and the Antarctic and/or sub-Antarctic. This suggests the species has been distributed across 247 

its current geographic range relatively recently. From dating analyses of peat cores the species is 248 

known to have been in the Antarctic for a minimum of ~5.5 ky, the age of the oldest fossil evidence of 249 

C. aciphyllum in the Antarctic (Björck et al. 1991; Fenton and Smith 1982). We can therefore dismiss 250 

human dispersal as a source of the first arrival of the species in the Antarctic. Exactly how long the 251 

species has been present in the Antarctic is uncertain as, because of extremely low levels of variation, 252 

molecular dating analyses of the different populations in C. aciphyllum were not informative (data not 253 

shown). However, theoretically, from a predefined ITS substitution rate of 1.35×10-3 subst. site-1 my-1, 254 
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originally derived from angiosperms (Les et al. 2003, and references therein) we would expect one 255 

substitution to have happened every 982,415 years in a 754 bp long ITS sequence (the ITS sequence 256 

length of C. aciphyllum haplotype IV, Fig 3c; 0.00135 subst. site-1 my-1 results in 1.0179 subst. 754 257 

sites-1 my-1, which is one mutation every 982,414.78 years). This simplistically suggests populations in 258 

South America and the Antarctic have likely been separated no longer than one million years, and a 259 

minimum of ~5.5 ky, the age of the oldest dated C. aciphyllum peat core in the Antarctic (see above). 260 

However, we acknowledge the rate used in this rough estimation does not take into account a rate 261 

standard deviation (which is not available), and that this rate might be different in bryophytes 262 

compared to angiosperms, and may also vary within bryophytes. From the genetic variation in this 263 

study it is not possible to assess the direction of spread, but it is perhaps more plausible that the species 264 

has spread from South America to the maritime Antarctic and/or sub-Antarctic, as the extant 265 

distributions of sister-species of C. aciphyllum only include South America. The 95%-probability 266 

distribution figures from the aerial modeling studies (Fig. 5) also suggest local wind patterns are more 267 

likely to transfer particles from southern South America to the northern maritime Antarctic than vice 268 

versa. Long-distance migration of moss particles via migratory birds may also have been a possibility 269 

for dispersal (and in either direction) (Lewis et al. 2014; Viana et al. 2016), although further research 270 

efforts are still needed to validate this mode of transfer in mosses. 271 

Even though using three markers that are often variable at species and population level (particularly 272 

ITS; Stech and Quandt 2010), there was no genetic variation within South American populations of C. 273 

aciphyllum, whereas the opposite would be expected of an ‘ancestral’ population. Further sampling 274 

might provide clarification on the genetic variation of C. aciphyllum in South American populations 275 

(many of the Chilean specimens used in this study identified as C. aciphyllum in herbarium records 276 

turned out to be misidentified and represent C. sphagneticola; see below). It is likely that these 277 

southern South American populations experienced a strong bottleneck throughout the LGM and 278 

possibly other Pleistocene glacial maxima, when the region was extensively glaciated (Hulton et al. 279 

2002). Molecular studies on a wide range of terrestrial biota strongly suggest the existence of local 280 

refugia in Patagonia throughout the LGM and previous glaciations, rather than recolonisation from 281 

northern regions (Sersic et al. 2011, and references therein). This scenario matches the still restricted 282 

distribution of C. aciphyllum, essentially limited to the far southern latitudes within South America. 283 

Despite the potential in C. aciphyllum for regeneration from viable shoots preserved in permafrost 284 
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(Roads et al. 2014), and therefore a possible survival strategy for long-term persistence in the Antarctic 285 

in situ, this study reveals very little genetic variation exists between South American and Antarctic 286 

populations. This suggests the species has not been present in the Antarctic on a multi-million year 287 

timescale, unlike for example the suggested Antarctic presence of Bryum argenteum (Pisa et al. 2014; 288 

Hills et al. 2010). If the oldest known bank of C. aciphyllum in the Antarctic (~5500 yrs old, on 289 

Elephant I., South Shetland Is.; Björck et al. 1991) represents the approximate arrival date of this 290 

species in the Antarctic, such a recent arrival would likely not have generated a strong detectable 291 

genetic differentiation, a finding consistent with the genetic signals in our study. The moss banks on 292 

Signy Island on the South Orkney Islands are also estimated to have begun to accumulate 293 

approximately 5.59-5.49 kya (Fenton 1982b; Smith 1990), suggesting this was one of the earliest 294 

periods with suitable conditions for post-glacial colonization. A similar implication of recent (post-295 

LGM) arrival of an Antarctic moss was reported by Kato et al. (2013), studying the moss Leptobryum 296 

wilsonii (Mitt.) Broth., a species found growing uniquely in lakes of the Sôya Coast region in East 297 

Antarctica. Using the same makers as applied here (rps4, trnL-F and ITS) very low genetic variation 298 

(one base substitution and three to four indels) was detected between samples of L. wilsonii from East 299 

Antarctica and Chile, locations separated by a considerably greater distance than those separating 300 

Chorisodontium populations in the current study. Both Kato et al. (2013) and the current study provide 301 

examples of species whose genetic diversity is consistent with the widespread but generally untested 302 

assumption that Antarctic moss species may be post-LGM arrivals (e.g. Convey et al. 2008; Ochyra et 303 

al. 2008; Peat et al. 2007). However, other features of the biology of both C. aciphyllum and L. 304 

wilsonii, in particular that neither produce sporophytes in the Antarctic and/or sub-Antarctic (Ochyra et 305 

al. 2008) where both rely solely on asexual reproduction, might (due to a lack of genetic variation 306 

associated with asexual reproduction) considerably slow their rates of evolution and hence 307 

underestimate the timing of their arrival in the continent. It should be noted, however, that we also 308 

observe little genetic variation within southern South American populations of C. aciphyllum (see Fig. 309 

3), as well as southern South American versus maritime Antarctic populations, despite the occurrence 310 

of sexual reproduction in the former population. 311 

We found evidence of local genetic variation in C. aciphyllum within several locations on Elephant 312 

Island (Figs. 3 and 4). Although this genetic variation was only small (two nucleotide additions in ITS), 313 

it revealed more variation in ITS between samples from Elephant Island than between samples from 314 
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much more geographically divergent locations in South America and the Antarctic. This increase in 315 

genetic variation may suggest that Elephant Island, which is also the most northern island in the South 316 

Shetland Islands, might possibly have had sufficiently mild environmental conditions to have enabled 317 

sexual reproduction in the past. Elephant Island is also the location with the deepest banks of C. 318 

aciphyllum in the Antarctic, suggesting this is the oldest Antarctic location where the moss has been 319 

present. It is possible that Elephant Island represents a genetic ‘hot spot’ relative to other Antarctic 320 

locations and, if so, this may apply to other plant and animal species that occur here. The finding of 321 

genetic variation within Elephant Island also highlights the importance of sampling multiple shoots per 322 

moss clump/patch to capture the full genetic variation present in a location, a factor overlooked if 323 

sampling single shoots alone. 324 

In both trnL-F and ITS phylogenies (see Figs. 3b, c), several Chilean specimens identified as C. 325 

aciphyllum (11472A, 02015 and 00504) were genetically similar to C. sphagneticola, likely due to a 326 

misidentification of these specimens. Likewise, several specimens identified as other Chorisodontium 327 

species were genetically identical to C. aciphyllum. The ITS region (Fig. 3c) of C. dicranellatum was 328 

genetically identical to C. aciphyllum. Similarly, the trnL-F spacer (Fig. 3b) of both specimens of the 329 

Neotropical C. mittenii and C. setaceum (i.e. C. wallisii; Frahm 1989) were genetically identical to C. 330 

aciphyllum. Frahm (1989) and Hyvönen (1991) distinguish C. wallisii and C. dicranellatum as different 331 

species, and therefore the similarity between these species in our study is likely due to misidentification 332 

of the specific material examined. This is exemplified by the rps4 sequences of C. setaceum (i.e. C. 333 

wallisii) and C. mittenii, which do differ from C. aciphyllum (Fig. 3a), while rps4 is often less 334 

divergent between species than ITS and trnL-F (Stech and Quandt 2010). Other specimens identified as 335 

different Chorisodontium species revealing genetic variation relative to the C. aciphyllum polytomy 336 

were C. sphagneticola (trnL-F and ITS), C. magellanicum and C. lanigerum (ITS), and C. spegazzini 337 

(00523) (different in the trnL-F; no genetic variation in ITS), suggesting these specimens indeed 338 

represent different species. However, although Hyvönen (1991) identifies C. sphagneticola as synonym 339 

of C. aciphyllum, we find this is likely not the case. We highlight here that, while this genus has 340 

received attention from systematic morphological studies (Frahm 1989; Hyvönen 1991), future 341 

taxonomic work on the phylogeny of this genus requires both morphological and phylogenetic 342 

approaches. 343 

 344 
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Figure legends 495 

 496 

Fig. 1 Extensive Chorisodontium aciphyllum moss bank growing on Signy Island, South Orkney 497 

Islands. For scale, the yellow post on the left is one meter long. Photographs: James Fenton 498 

 499 

Fig. 2 Map showing locations of samples of Chorisodontium aciphyllum (dark grey) and other 500 

Chorisodontium species (C. magellanicum, C. lanigerum, C. spegazzini, C. dicranellatum and C. 501 

sphagneticola; light grey), as used in this study. Specimens from C. mittenii and C. setaceum are not 502 

shown as collection coordinates are unknown or fall outside the map (see Table 1) 503 

 504 

Fig. 3 Bayesian phylogenetic trees and haplotype networks constructed with (a) plastid loci rps4 and 505 

(b) trnL-F, and (c) nuclear marker ITS for Chorisodontium aciphyllum. Posterior probabilities are 506 

shown next to the relevant branches. Scale bars below the trees represent the mean number of 507 

nucleotide substitutions per site. Taxon colours refer to the different locations and/or different 508 

Chorisodontium species (see legend and map). Outgroup specimens in the trees are indicated in black. 509 

Numbers in brackets behind some taxa from the South Shetland Islands and the Antarctic Peninsula 510 

represent the number of replicates with identical haplotypes. In the ITS phylogeny (c) sample names 511 

with a and b represent different haplotypes within Elephant Island samples. Haplotype network circle 512 

sizes correspond to the number of specimens per haplotype (see legend). Different haplotypes are 513 

indicated with roman numerals (I-V). Branches represent mutations between haplotypes, with 514 

mutations shown as black lines and indel information with double lines (see legend) 515 

 516 

Fig. 4 Partial alignment of ITS showing the within-population variation in Chorisodontium aciphyllum 517 

populations on Elephant Island. The two variable sites between samples are situated in the ITS1 (left; 518 

alignment position 144*) and in ITS2 (right; alignment position 475*). Nucleotide differences are 519 

marked with number 1 and 2 below the alignment. Sample names with a and b represent samples 520 

without and with the extra nucleotide sites, respectively. *= relative position in alignment of Elephant 521 

Island specimens only 522 

 523 
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Fig. 5 Dispersal density spatial maps expressed as the percentage of times that an air mass from a given 524 

initial location passes within a radius of 200 km, re-created from daily air mass movements within a 24 525 

h period. (a) and (b) represent starting locations (shown as *) from southern South America and the 526 

northern maritime Antarctic, respectively 527 

 528 

529 
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Table 1. Chorisodontium specimens used in this study including herbarium details, collection coordinates (in 

decimal degrees) and accession numbers. Specimens include C. aciphyllum as well as several specimens from 

other Chorisodontium species (if species name is not mentioned the specimen is identified as C. aciphyllum). 

SSI= South Shetland Islands, AP= Antarctic Peninsula. Numbers in brackets behind some taxa from the South 

Shetland Islands and the Antarctic Peninsula represent the number of replicates of a particular location (within ~5 

cm) with identical haplotypes. In case of identical sequences in all replicates of one location (e.g. SSI, Ardley I.  

1A (4)) only one sequence is uploaded to Genbank. UC = University of Cambridge 

Specimen (Species, Geographic 

origin, herbarium no.) 

Herbarium/ 

Collection + 

Coll. number 

Collection 
Latitude + 

Longitude  
ITS rps4 trnL-F 

Chile  11472A AAS 11472A Smith, R.I.L. -55.98,-67.27  MG076984 MG077055  MG077031 

C. magellanicum, Chile  00522 AAS 00522 Roivainen, H. -54.56,-69.80 a MG076982    

Chile  00507 AAS 00507 Roivainen, H. -54.45,-70.67  MG076991    

Chile  00504 AAS 00504 Roivainen, H. -54.45,-70.67    MG077030 

C. lanigerum, Chile  00512 AAS 00512 Roivainen, H. -54.45,-70.67  MG076986    

C. spegazzini, Chile  00523 AAS 00523 Roivainen, H. -54.08,-71.03  MG076987  MG077029 

Argentina  00173 AAS 00173 Castellanos -54.78,-64.25  MG076992    

Argentina  00712 AAS 00712 Matteri, C.M. -54.30,-68.00  MG076993    

C. dicranellatum, Argentina  00509 AAS 00509 Roivainen, H. -53.60,-69.55 b MG076988    

C. dicranellatum, Argentina  00511 AAS 00511 Roivainen, H. -53.64,-69.65 b MG076989    

C. sphagneticola, Chile  00525 AAS 00525 Roivainen, H. -53.64,-69.65 b MG076983  MG077028 

Chile  02015 AAS 02015 Matteri, C.M. -51.47,-73.27  MG076985  MG077027 

C. sp, Chile 00355 AAS 00355 Pisano, E.  -52.08,-71.92 MG076990  MG077042 

Falkland Is.  5440 AAS 5440 Smith, R.I.L. -51.68,-58.83 a MG077015  MG077032 

Falkland Is.  00131A AAS 00131A Engel, J.J. -51.75,-59.50  MG076998    

South Georgia  05031 AAS 05031 Smith, R.I.L. -54.00,-38.08  MG077022 MG077058 MG077038 

South Georgia  00295 AAS 00295 Briggs, M. -54.30,-36.52  MG076994 MG077057  MG077036 

South Georgia  00291 AAS 00291 Cable, S. -54.18,-36.72  MG076995 MG077056  MG077035 

South Georgia  01154 AAS 01154 Smith, R.I.L. -54.28,-36.50  MG076996    

S. Orkney Is.  04965 AAS 04965 Walton, D.W.H. -60.63,-45.58  MG077023  MG077037 

S. Orkney Is.  05251 AAS 05251 Smith, R.I.L. -60.73,-45.68  MG077024 MG077059 MG077039 

S. Orkney Is.  08007 AAS 08007 Smith, R.I.L. -60.60,-46.05  MG077025 MG077060 MG077040 

SSI, Ardley I.  1A (4) UC 1A (1-4) Royles, J. -62.21,-58.93 MG076999  MG077044 

SSI, Ardley I.  1B (5) UC 1B (1-5) Royles, J. -62.21,-58.93 MG077000 MG077063 MG077045 

SSI, Ardley I.  1D (5) UC 1D (1-5) Royles, J. -62.21,-58.93 MG077001  MG077046 

SSI, Ardley I.  2A (5) UC 2A (1-5) Royles, J. -62.21,-58.94 MG077002 MG077064   

SSI, Ardley I.  2E (5) UC 2E (1-5) Royles, J. -62.21,-58.94 MG077003    

SSI, Elephant I.  1A b (1) UC 1A (1) Royles, J. -61.14,-54.70  MG077004 MG077065   

SSI, Elephant I.  1C a (2) UC 1C (2) Royles, J. -61.14,-54.70  MG077009    

SSI, Elephant I.  1C b (1) UC 1C (1) Royles, J. -61.14,-54.70  MG077005    

SSI, Elephant I.  1D a (2) UC 1D (2) Royles, J. -61.14,-54.70  MG077010    

SSI, Elephant I.  1D b (3) UC 1D (2) Royles, J. -61.14,-54.70  MG077006    

SSI, Elephant I.  2A a (4) UC 2A (4) Royles, J. -61.14,-54.70 MG077011    

SSI, Elephant I.  2A b (1) UC 2A (1) Royles, J. -61.14,-54.70  MG077007    

SSI, Elephant I.  3A a (4) UC 3A (4) Royles, J. -61.14,-54.71  MG077012 MG077066   

SSI, Elephant I.  3B a (1) UC 3B (1) Royles, J. -61.14,-54.71 MG077013    

SSI, Elephant I.  3B b (4) UC 3B (4) Royles, J. -61.14,-54.71 MG077008 MG077067 MG077047 

SSI, Robert I.   BAS s.n. Biersma, E.M. -62.38,-59.66 MG077014 MG077062 MG077043 

AP, Norsel Point  1A (5) UC 1A (1-5) Royles, J. -64.76,-64.08 MG077016 MG077068 MG077048 

AP, Norsel Point  1B (5) UC 1B (1-5) Royles, J. -64.76,-64.08 MG077017 MG077069 MG077049 

AP, Norsel Point  1C (5) UC 1C (1-5) Royles, J. -64.76,-64.08 MG077018  MG077050 

AP, Norsel Point  2A (5) UC 2A (1-5) Royles, J. -64.76,-64.08 MG077019 MG077070 MG077051 

AP, Norsel Point  2B (5) UC 2B (1-5) Royles, J. -64.76,-64.08 MG077020  MG077052 

AP, Norsel Point  2C (5) UC 2C (1-5) Royles, J. -64.76,-64.08 MG077021  MG077053 

AP, Danco Coast  11938A AAS 11938A Smith, R.I.L. -64.68,-62.63  MG076997  MG077034 

AP, Danco Coast  08801 AAS 08801 Weinstein, R. -64.68,-62.63  MG077026 MG077061  MG077041  

AP, Graham Coast  10661 AAS 10661 Fowbert, J.A. -65.28,-64.13   MG077054  MG077033 

C. mittenii Bolivia AY908107 MO 19750 Churchill et al  -16.27,-67.83   AY908107   

C. mittenii AF435272/AF435311 DUKE PV 1515 Griffin & Lopez -  AF435272 AF435311                            

C. setaceum AF435273/AF435312 DUKE 9168 Allen  -  AF435273 AF435312                            

Longitudes and latitudes not provided with sample. Approximate location found via:  

a= http://mynasadata.larc.nasa.gov/latitudelongitude-finder/, b= Global Plants database; http://plants.jstor.org/ 
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                                           130           144             160     460            475            490 

                                            |             |               |       |              |              | 

S.Shetland Is., Elephant I., 1C a (2)    ...CCTCCAATATGGAT-GGGGGGAACTCTGCTC... ...AATCCACTCCCAGCT-CGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 1D a (2)    ...CCTCCAATATGGAT-GGGGGGAACTCTGCTC... ...AATCCACTCCCAGCT-CGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 2A a (4)    ...CCTCCAATATGGAT-GGGGGGAACTCTGCTC... ...AATCCACTCCCAGCT-CGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 3A a (4)    ...CCTCCAATATGGAT-GGGGGGAACTCTGCTC... ...AATCCACTCCCAGCT-CGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 3B a (1)    ...CCTCCAATATGGAT-GGGGGGAACTCTGCTC... ...AATCCACTCCCAGCT-CGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 1A b (1)    ...CCTCCAATATGGATGGGGGGGAACTCTGCTC... ...AATCCACTCCCAGCTCCGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 1C b (1)    ...CCTCCAATATGGATGGGGGGGAACTCTGCTC... ...AATCCACTCCCAGCTCCGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 1D b (3)    ...CCTCCAATATGGATGGGGGGGAACTCTGCTC... ...AATCCACTCCCAGCTCCGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 2A b (1)    ...CCTCCAATATGGATGGGGGGGAACTCTGCTC... ...AATCCACTCCCAGCTCCGACTGGGAGTGCGA... 

S.Shetland Is., Elephant I., 3B b (4)    ...CCTCCAATATGGATGGGGGGGAACTCTGCTC... ...AATCCACTCCCAGCTCCGACTGGGAGTGCGA... 
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