2,585 research outputs found
Efficient fault diagnosis of helicopter gearboxes
Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a nonparametric pattern classifier that uses a multi-valued influence matrix (MVIM) as its diagnostic model and benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as they are included in training
Helicopter transmission research at NASA Lewis Research Center
A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Aviation Systems Command has existed since 1970. Program goals are to reduce weight and noise and to increase life and reliability. Reviewed are significant advances in technology for gears and transmissions and the experimental facilities at NASA Lewis for helicopter transmission testing are described. A description of each of the rigs is presented along with some significant results from the experiments
Machine learning for automatic prediction of the quality of electrophysiological recordings
The quality of electrophysiological recordings varies a lot due to technical and biological variability and neuroscientists inevitably have to select “good” recordings for further analyses. This procedure is time-consuming and prone to selection biases. Here, we investigate replacing human decisions by a machine learning approach. We define 16 features, such as spike height and width, select the most informative ones using a wrapper method and train a classifier to reproduce the judgement of one of our expert electrophysiologists. Generalisation performance is then assessed on unseen data, classified by the same or by another expert. We observe that the learning machine can be equally, if not more, consistent in its judgements as individual experts amongst each other. Best performance is achieved for a limited number of informative features; the optimal feature set being different from one data set to another. With 80–90% of correct judgements, the performance of the system is very promising within the data sets of each expert but judgments are less reliable when it is used across sets of recordings from different experts. We conclude that the proposed approach is relevant to the selection of electrophysiological recordings, provided parameters are adjusted to different types of experiments and to individual experimenters
The Fermat-Torricelli problem in normed planes and spaces
We investigate the Fermat-Torricelli problem in d-dimensional real normed
spaces or Minkowski spaces, mainly for d=2. Our approach is to study the
Fermat-Torricelli locus in a geometric way. We present many new results, as
well as give an exposition of known results that are scattered in various
sources, with proofs for some of them. Together, these results can be
considered to be a minitheory of the Fermat-Torricelli problem in Minkowski
spaces and especially in Minkowski planes. This demonstrates that substantial
results about locational problems valid for all norms can be found using a
geometric approach
An analysis of integrative outcomes in the Dayton peace negotiations
The nature of the negotiated outcomes of the eight issues of the Dayton Peace Agreement was studied in terms of their integrative and distributive aspects. in cases where integrative elements were Sound, further analysis was conducted by concentrating on Pruitt's five types of integrative solutions: expanding the pie, cost cutting, non-specific compensation, logrolling, and bridging. The results showed that real world international negotiations can arrive at integrative agreements even when they involve redistribution of resources tin this case the redistribution of former Yugoslavia). Another conclusion was that an agreement can consist of several distributive outcomes and several integrative outcomes produced by different kinds of mechanisms. Similarly, in single issues more than one mechanism can be used simultaneously. Some distributive bargaining was needed in order to determine how much compensation was required. Finally, each integrative formula had some distributive aspects as well
Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing
A continuous wave optical parametric oscillator, generating up to 300 mW idler output in the 3–4 μm wavelength region, and pumped by a fiber-amplified DBR diode laser is used for trace gas detection by means of quartz-enhanced photoacoustic spectroscopy (QEPAS). Mode-hop-free tuning of the OPO output over 5.2 cm-1 and continuous spectral coverage exceeding 16.5 cm-1 were achieved via electronic pump source tuning alone. Online monitoring of the idler wavelength, with feedback to the DBR diode laser, provided an automated closed-loop control allowing arbitrary idler wavelength selection within the pump tuning range and locking of the idler wavelength with a stability of 1.7×10-3 cm-1 over at least 30 min.\ud
\ud
Using this approach, we locked the idler wavelength at an ethane absorption peak and obtained QEPAS data to verify the linear response of the QEPAS signal at different ethane concentrations (100 ppbv-20 ppmv) and different power levels. The detection limit for ethane was determined to be 13 ppbv (20 s averaging), corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-7 cm-1 W/Hz1/2
Measurements of , , , and proton production in proton-carbon interactions at 31 GeV/ with the NA61/SHINE spectrometer at the CERN SPS
Measurements of hadron production in p+C interactions at 31 GeV/c are
performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2009 using a graphite target with a
thickness of 4% of a nuclear interaction length. Inelastic and production cross
sections as well as spectra of , , p, and are
measured with high precision. These measurements are essential for improved
calculations of the initial neutrino fluxes in the T2K long-baseline neutrino
oscillation experiment in Japan. A comparison of the NA61/SHINE measurements
with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the
final published versio
Bilateral negotiation in a multi-agent supply chain system
A supply chain is a set of organizations directly linked by flows of services from suppliers to customers. Supply chain activities range from the ordering and receipt of raw materials to the production and distribution of finished goods. Supply chain management is the integration of key activities across a supply chain for the purposes of building competitive infrastructures, synchronizing supply with demand, and leveraging worldwide logistics. This paper addresses the challenges created by supply chain management towards improving long-term performance of companies. It presents a multi-agent supply chain system composed of multiple software agents, each responsible for one or more supply chain activities, and each interacting with other agents in the execution of their responsibilities. Additionally, this paper presents the key features of a negotiation model for software agents. The model handles bilateral multi-issue negotiation and incorporates an alternating offers protocol, a set of logrolling strategies, and a set of negotiation tactics
Measurements of , K, p and spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS
Measurements of inclusive spectra and mean multiplicities of ,
K, p and produced in inelastic p+p interactions at
incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ( 6.3,
7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super
Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer.
Spectra are presented as function of rapidity and transverse momentum and are
compared to predictions of current models. The measurements serve as the
baseline in the NA61/SHINE study of the properties of the onset of
deconfinement and search for the critical point of strongly interacting matter
The Masaya Triple Layer: a 2100 year old basaltic multi-episodic Plinian eruption from the Masaya Caldera Complex (Nicaragua)
The Masaya Caldera Complex has been the site of three highly explosive basaltic eruptions within the last six thousand years. A Plinian eruption ca. 2 ka ago formed the widespread deposits of the Masaya Triple Layer. We distinguish two facies within the Masaya Triple Layer from each other: La Concepción facies to the south and Managua facies to the northwest. These two facies were previously treated as two separated deposits (La Concepción Tephra and the Masaya Triple Layer of Pérez and Freundt, 2006) because of their distinct regional distribution and internal architectures. However, chemical compositions of bulk rock, matrix and inclusion glasses and mineral phases demonstrate that they are the product of a single basaltic magma batch. Additionally, a marker bed containing fluidal-shaped vesicular lapilli allowed us to make a plausible correlation between the two facies, also supported by consistent lateral changes in lithologic structure and composition, thickness and grain size.
We distinguish 10 main subunits of the Masaya Triple Layer (I to X), with bulk volumes ranging between 0.02 and 0.22 km3, adding up to 0.86 km3 (0.4 km3 DRE) for the entire deposit. Distal deposits identified in two cores drilled offshore Nicaragua, at a distance of ∼ 170 km from the Masaya Caldera Complex, increase the total tephra volume to 3.4 km3 or ∼ 1.8 km3 DRE of erupted basaltic magma.
Isopleth data of five major fallout subunits indicate mass discharges of 106 to 108 kg/s and eruption columns of 21 to 32 km height, affected by wind speeds of < 2 m/s to ∼ 20 m/s which increased during the course of the multi-episodic eruption. Magmatic Plinian events alternated with phreatoplinian eruptions and phreatomagmatic explosions generating surges that typically preceded breaks in activity. While single eruptive episodes lasted for few hours, the entire eruption probable lasted weeks to months. This is indicated by changes in atmospheric conditions and ash-layer surfaces that had become modified during the breaks in activity. The Masaya Triple Layer has allowed to reconstruct in detail how a basaltic Plinian eruption develops in terms of duration, episodicity, and variable access of external water to the conduit, with implications for volcanic hazard assessment
- …
