231 research outputs found

    Manganese pigmented anodized copper as solar selective absorber

    Get PDF
    The study concerns the optical and structural properties of layers obtained by a new efficient surface treatment totally free of chromium species. The process is made up of an anodic oxidation of copper in an alkaline solution followed by an alkaline potassium permanganate dipping post-treatment. Coatings, obtained at the lab and pilot scales, are stable up to 220 °C in air and vacuum, present low emissivity (0.14 at 70 °C) and high solar absorptivity (0.96), i.e. a suitable thermal efficiency (0.84 at 70 °C)

    A new species of Colostethus (Anura, Dendrobatidae) from French Guiana with a redescription of Colostethus beebei (Noble, 1923) from its type locality

    Get PDF
    A new species of Colostethus, long mistaken for Colostethus beebei, is described from French Guiana. The new species can be distinguished from congeners by absence of median lingual process, first finger longer than second, third finger not distinctly swollen in males, differences in tadpole morphology, coloration and pattern (e.g. absence of dorsolateral stripe), bioacoustics, and reproductive behavior. A complete redescription of Colostethus beebei plus description of its tadpole and call is provided on the basis of recently collected topotypic specimens. The range of C. beebei is restricted to the Kaieteur plateau, Pakaraima Mountains, Guyana

    Association of Trace Element Levels with Outcomes in Critically Ill COVID-19 Patients.

    Get PDF
    The primary objective of this study was to compare the plasma levels of copper, selenium, and zinc between critically ill COVID-19 patients and less severe COVID-19 patients. The secondary objective was to investigate the association of these trace element levels with adverse outcomes, including the duration of mechanical ventilation, occurrence of septic shock, and mortality in critically ill COVID-19 patients. All COVID-19 patients admitted to the ICU of the Geneva University Hospitals between 9 March 2020 and 19 May 2020 were included in the study. Plasma levels of copper, selenium and zinc were measured on admission to the ICU and compared with levels measured in COVID-19 patients hospitalized on the ward and in non-hospitalized COVID-19 patients. To analyze the association of trace elements with clinical outcomes, multivariate linear and logistic regressions were performed. Patients in the ICU had significantly lower levels of selenium and zinc and higher levels of copper compared to COVID-19 patients hospitalized on the ward and in non-hospitalized COVID-19 patients. In ICU patients, lower zinc levels tended to be associated with more septic shock and increased mortality compared to those with higher zinc levels (p = 0.07 for both). Having lower copper or selenium levels was associated with a longer time under mechanical ventilation (p = 0.01 and 0.04, respectively). These associations remained significant in multivariate analyses (p = 0.03 for copper and p = 0.04 for selenium). These data support the need for interventional studies to assess the potential benefit of zinc, copper and selenium supplementation in severe COVID-19 patients

    Translating drug resistant tuberculosis treatment guidelines to reality in war-torn Kandahar, Afghanistan: a retrospective cohort study

    Get PDF
    Introduction Afghanistan is affected by one of the world’s longest protracted armed conflicts, frequent natural disasters, disease outbreaks and large population movements and it suffers from a high burden of tuberculosis (TB), including rifampicin-resistant TB (RR-TB). The study shows Médecins Sans Frontières’ experiences with care for patients with RR-TB in Kandahar Province. We describe the uptake of RR-TB treatment, how World Health Organisation criteria for the choice between the short and an individualized regimen were implemented, and treatment outcomes. Methods This is a retrospective cohort analysis of routinely collected data from RR-TB patients enrolled in care from 2016 until 2019. Descriptive analysis was performed to present characteristics of patients and treatment outcomes. Multivariable Cox analysis was performed to identify risk factors for having an unfavourable treatment outcome. Results Out of 146 enrolled RR-TB patients, 112 (76.7%) started treatment: 41 (36.6%) and 71 (63.4%) with the short and individualized treatment regimen, respectively. Of 82 with results for fluoroquinolone susceptibility, 39 (47.6%) had fluoroquinolone-resistant TB. Seven patients with initially fluoroquinolone-resistant TB and three pregnant women started the short regimen and 18 patients eligible for the short regimen started the injectable-free individualized regimen. Overall, six-month smear and culture conversion were 98.7% and 97.1%, respectively; treatment success was 70.1%. Known initial fluoroquinolone resistance (aHR 3.77, 95%CI:1.53–9.27) but not choice of regimen predicted having an unfavourable outcome. Conclusion Even though criteria for the choice of treatment regimen were not applied strictly, we have achieved acceptable outcomes in this cohort. To expand RR-TB care, treatment regimens should fit provision at primary health care level and take patient preferences into account

    Author Correction: A ferroptosis–based panel of prognostic biomarkers for Amyotrophic Lateral Sclerosis

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-019-39739-5, published online 27 February 201

    Mitochondrial energetic defects in muscle and brain of a Hmbs-/- mouse model of acute intermittent porphyria

    Get PDF
    Acute intermittent porphyria (AIP), an autosomal dominant metabolic disease (MIM #176000), is due to a deficiency of hydroxymethylbilane synthase (HMBS), which catalyzes the third step of the heme biosynthetic pathway. The clinical expression of the disease is mainly neurological, involving the autonomous, central and peripheral nervous systems. We explored mitochondrial oxidative phosphorylation (OXPHOS) in the brain and skeletal muscle of the Hmbs(-/-) mouse model first in the basal state (BS), and then after induction of the disease with phenobarbital and treatment with heme arginate (HA). The modification of the respiratory parameters, determined in mice in the BS, reflected a spontaneous metabolic energetic adaptation to HMBS deficiency. Phenobarbital induced a sharp alteration of the oxidative metabolism with a significant decrease of ATP production in skeletal muscle that was restored by treatment with HA. This OXPHOS defect was due to deficiencies in complexes I and II in the skeletal muscle whereas all four respiratory chain complexes were affected in the brain. To date, the pathogenesis of AIP has been mainly attributed to the neurotoxicity of aminolevulinic acid and heme deficiency. Our results show that mitochondrial energetic failure also plays an important role in the expression of the disease

    Statistical Computing on Non-Linear Spaces for Computational Anatomy

    Get PDF
    International audienceComputational anatomy is an emerging discipline that aims at analyzing and modeling the individual anatomy of organs and their biological variability across a population. However, understanding and modeling the shape of organs is made difficult by the absence of physical models for comparing different subjects, the complexity of shapes, and the high number of degrees of freedom implied. Moreover, the geometric nature of the anatomical features usually extracted raises the need for statistics on objects like curves, surfaces and deformations that do not belong to standard Euclidean spaces. We explain in this chapter how the Riemannian structure can provide a powerful framework to build generic statistical computing tools. We show that few computational tools derive for each Riemannian metric can be used in practice as the basic atoms to build more complex generic algorithms such as interpolation, filtering and anisotropic diffusion on fields of geometric features. This computational framework is illustrated with the analysis of the shape of the scoliotic spine and the modeling of the brain variability from sulcal lines where the results suggest new anatomical findings

    Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    Get PDF
    Abstract Background This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)

    Brain Structure and Degeneration Staging in Friedreich Ataxia: Magnetic Resonance Imaging Volumetrics from the ENIGMA-Ataxia Working Group

    Get PDF
    open48siThe method harmonization and multisite data analysis elements of this work were supported by the NIH BD2K (Big Data to Knowledge) program (grant U54 EB020403) and the Australian National Health and Medical Research Council (fellowship 1106533, grant 1184403).Objective: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. Methods: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. Results: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5–2.6). Cerebellar gray matter alterations were most pronounced in lobules I–VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax = 0.35) and peduncles (rmax = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax = −0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. Interpretation: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570–583.openHarding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M.Harding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M
    corecore