3,594 research outputs found

    Expected Supremum of a Random Linear Combination of Shifted Kernels

    Full text link
    We address the expected supremum of a linear combination of shifts of the sinc kernel with random coefficients. When the coefficients are Gaussian, the expected supremum is of order \sqrt{\log n}, where n is the number of shifts. When the coefficients are uniformly bounded, the expected supremum is of order \log\log n. This is a noteworthy difference to orthonormal functions on the unit interval, where the expected supremum is of order \sqrt{n\log n} for all reasonable coefficient statistics.Comment: To appear in the Journal of Fourier Analysis and Application

    An investigation of the line of sight towards QSO PKS 0237-233

    Full text link
    We present a detailed analysis of absorption systems along the line of sight towards QSO PKS 0237-233 using a high resolution spectrum of signal-to-noise ratio (SNR) ~ 60-80 obtained with the Ultraviolet and Visual Echelle Spectrograph mounted on the Very Large Telescope. This line of sight is known to show a remarkable overdensity of CIV systems that has been interpreted as revealing the presence of a supercluster of galaxies. A detailed analysis of each of these absorption systems is presented. In particular, for the z_abs = 1.6359 (with two components of logN(HI) = 18.45, 19.05) and z_abs = 1.6720 (logN(H I) = 19.78) sub-Damped Ly-alpha systems (sub-DLAs), we measure accurate abundances (resp. [O/H] = -1.63(0.07) and [Zn/H] = - 0.57(0.05) relative to solar). While the depletion of refractory elements onto dust grains in both sub-DLAs is not noteworthy, photoionization models show that ionization effects are important in a part of the absorbing gas of the sub-DLA at z_abs = 1.6359 (HI is 95 percent ionized) and in part of the gas of the sub-DLA at z_abs = 1.6359. The CIV clustering properties along the line of sight is studied in order to investigate the nature of the observed overdensity. We conclude that despite the unusually high number of CIV systems detected along the line of sight, there is no compelling evidence for the presence of a single unusual overdensity and that the situation is consistent with chance coincidence.Comment: Accepted for publication in MNRAS. 23 pages, 16 figures, 12 table

    GABAC Receptors in the Lateral Amygdala: A Possible Novel Target for the Treatment of Fear and Anxiety Disorders?

    Get PDF
    Activation of GABAARs in the lateral nucleus of the amygdala (LA), a key site of plasticity underlying fear learning, impairs fear learning. The role of GABACRs in the LA and other brain areas is poorly understood. GABACRs could be an important novel target for pharmacological treatments of anxiety-related disorders since, unlike GABAARs, GABACRs do not desensitize. To detect functional GABACRs in the LA we performed whole cell patch clamp recordings in vitro. We found that GABAARs and GABABRs blockade lead to a reduction of evoked inhibition and an increase increment of excitation, but activation of GABACRs caused elevations of evoked excitation, while blocking GABACRs reduced evoked excitation. Based on this evidence we tested whether GABACRs in LA contribute to fear learning in vivo. It is established that activation of GABAARs leads to blockage of fear learning. Application of GABAC drugs had a very different effect; fear learning was enhanced by activating and attenuated by blocking GABACRs in the LA. Our results suggest that GABAC and GABAARs play opposing roles in modulation of associative plasticity in LA neurons of rats. This novel role of GABACRs furthers our understanding of GABA receptors in fear memory acquisition and storage and suggests a possible novel target for the treatment of fear and anxiety disorders

    Optimization of a Classical Stamping Progression by Modal Correction of Anisotropy Ears

    Get PDF
    This work is a development from the Inetforsmep European project. We proposed to realize a global optimization of a deep drawing industrial progression (made of several stages) for a cup manufacture. The objectives of the process were the thickness decrease and the geometrical parameters (especially the height). This paper improves on this previous work in the aim of mastering the contour error. From the optimal configuration, we expect to cut down the amount of the needed material and the number of forming operations. Our action is focused on the appearance of unexpected undulations (ears) located on the rim of the cups during forming due to a nonuniform crystallographic texture. Those undulations can cause a significant amount of scraps, productivity loss, and cost during manufacture. In this paper, this phenomenon causes the use of four forming operations for the cup manufacture. The aim is to cut down from four to two forming stages by defining an optimal blank (size and shape). The advantage is to reduce the cost of the tool manufacturing and to minimize the needed material (by suppressing the part flange). The chosen approach consists in defining a particular description of the ears' part by modal decomposition and then simulating several blank shapes and sizes generated by discrete cosine transformation (DCT). The use of a numerical simulation for the forming operation and the design of an experiment technique allow mathematical links between the ears' formation and the DCT coefficients. An optimization is then possible by using mathematical links. This original approach leads the ears' amplitude to be reduced by a factor of 10, with only 15 numerical experiments. Moreover, we have limited the number of forming stages from 4 to 2 with a minimal material use

    A prototype ASIC for APD array readout of scintillating plastic fibers

    Get PDF
    We report on the development of custom front-end electronics for use with avalanche photodiode (APD) arrays as part of a NASA technology study for the readout of scintillating plastic fibers. APD arrays featuring 64 1 mm square pixels are used. We demonstrate that a pixel of these APD arrays coupled to relatively thin (0.25 mm) and short (15 cm) scintillating plastic fibers can be used to detect and measure the tracks of even minimum ionizing particles (MIPs). An applicationspecific integrated circuit (ASIC) implementation of the electronics is required to produce a detector sufficiently compact for practical use in a flight experiment featuring many thousands of channels. This paper briefly describes the detector concept and performance and presents the design and performance of a four-channel prototype ASIC fabricated using the 0.35 micron TSMC process

    CO-dark molecular gas at high redshift: very large H2_2 content and high pressure in a low metallicity damped Lyman-alpha system

    Full text link
    We present a detailed analysis of a H2_2-rich, extremely strong intervening Damped Ly-α\alpha Absorption system (DLA) at zabs=2.786z_{\rm abs}=2.786 towards the quasar J \,0843+0221, observed with the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. The total column density of molecular (resp. atomic) hydrogen is log⁥N\log N(H2_2)=21.21±0.0221.21\pm0.02 (resp. log⁥N\log N(H \,I)=21.82±0.1121.82\pm0.11), making it to be the first case in quasar absorption lines studies with H2_2 column density as high as what is seen in 13^{13}CO-selected clouds in the Milky-Way. We find that this system has one of the lowest metallicity detected among H2_2-bearing DLAs, with [Zn/H]=−1.52−0.10+0.08\rm [Zn/H]=-1.52^{+0.08}_{-0.10}. This can be the reason for the marked differences compared to systems with similar H2_2 column densities in the local Universe: (i)(i) the kinetic temperature, T∌T\sim120~K, derived from the J=0,1J=0,1 H2_2 rotational levels is at least twice higher than expected; (ii)(ii) there is little dust extinction with AV<0.1_V < 0.1; (iii)(iii) no CO molecules are detected, putting a constraint on the XCOX_{\rm CO} factor XCO>2×1023X_{\rm CO}> 2\times 10^{23} cm−2^{-2}/(km/s\,K), in the very low metallicity gas. Low CO and high H2_2 contents indicate that this system represents "CO-dark/faint" gas. We investigate the physical conditions in the H2_2-bearing gas using the fine-structure levels of C \,I, C \,II, Si \,II and the rotational levels of HD and H2_2. We find the number density to be about n∌260−380 n \sim 260-380\,cm−3^{-3}, implying a high thermal pressure of (3−5)×104 (3-5) \times 10^4\,cm−3 ^{-3}\,K. We further identify a trend of increasing pressure with increasing total hydrogen column density. This independently supports the suggestion that extremely strong DLAs (with log⁡ \log\,N(H) ∌22\sim 22) probe high-z galaxies at low impact parameters.Comment: 21 pages, 21 figures. Accepted for publication in MNRA

    Monsters, black holes and the statistical mechanics of gravity

    Full text link
    We review the construction of monsters in classical general relativity. Monsters have finite ADM mass and surface area, but potentially unbounded entropy. From the curved space perspective they are objects with large proper volume that can be glued on to an asymptotically flat space. At no point is the curvature or energy density required to be large in Planck units, and quantum gravitational effects are, in the conventional effective field theory framework, small everywhere. Since they can have more entropy than a black hole of equal mass, monsters are problematic for certain interpretations of black hole entropy and the AdS/CFT duality. In the second part of the paper we review recent developments in the foundations of statistical mechanics which make use of properties of high-dimensional (Hilbert) spaces. These results primarily depend on kinematics -- essentially, the geometry of Hilbert space -- and are relatively insensitive to dynamics. We discuss how this approach might be adopted as a basis for the statistical mechanics of gravity. Interestingly, monsters and other highly entropic configurations play an important role.Comment: 9 pages, 4 figures, revtex; invited Brief Review to be published in Modern Physics Letters

    KECK HIRES Spectroscopy of APM 08279+5255

    Get PDF
    With an optical R-band magnitude of 15.2, the recently discovered z=3.911 BAL quasar APM 08279+5255 is an exceptionally bright high redshift source. Its brightness has allowed us to acquire a high signal-to-noise ratio (~100), high resolution (~6 km/s) spectrum using the HIRES echelle spectrograph on the 10-m Keck I telescope. Given the quality of the data, these observations provide an unprecedented view of associated and intervening absorption systems. Here we announce the availability of this spectrum to the general astronomical community and present a brief analysis of some of its main features.Comment: 21 pages including 5 figures. Accepted for publication by PAS

    Perimeter of sublevel sets in infinite dimensional spaces

    Full text link
    We compare the perimeter measure with the Airault-Malliavin surface measure and we prove that all open convex subsets of abstract Wiener spaces have finite perimeter. By an explicit counter-example, we show that in general this is not true for compact convex domains
    • 

    corecore