research

CO-dark molecular gas at high redshift: very large H2_2 content and high pressure in a low metallicity damped Lyman-alpha system

Abstract

We present a detailed analysis of a H2_2-rich, extremely strong intervening Damped Ly-α\alpha Absorption system (DLA) at zabs=2.786z_{\rm abs}=2.786 towards the quasar J\,0843+0221, observed with the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. The total column density of molecular (resp. atomic) hydrogen is logN\log N(H2_2)=21.21±0.0221.21\pm0.02 (resp. logN\log N(H\,I)=21.82±0.1121.82\pm0.11), making it to be the first case in quasar absorption lines studies with H2_2 column density as high as what is seen in 13^{13}CO-selected clouds in the Milky-Way. We find that this system has one of the lowest metallicity detected among H2_2-bearing DLAs, with [Zn/H]=1.520.10+0.08\rm [Zn/H]=-1.52^{+0.08}_{-0.10}. This can be the reason for the marked differences compared to systems with similar H2_2 column densities in the local Universe: (i)(i) the kinetic temperature, TT\sim120~K, derived from the J=0,1J=0,1 H2_2 rotational levels is at least twice higher than expected; (ii)(ii) there is little dust extinction with AV<0.1_V < 0.1; (iii)(iii) no CO molecules are detected, putting a constraint on the XCOX_{\rm CO} factor XCO>2×1023X_{\rm CO}> 2\times 10^{23} cm2^{-2}/(km/s\,K), in the very low metallicity gas. Low CO and high H2_2 contents indicate that this system represents "CO-dark/faint" gas. We investigate the physical conditions in the H2_2-bearing gas using the fine-structure levels of C\,I, C\,II, Si\,II and the rotational levels of HD and H2_2. We find the number density to be about n260380n \sim 260-380\,cm3^{-3}, implying a high thermal pressure of (35)×104(3-5) \times 10^4\,cm3^{-3}\,K. We further identify a trend of increasing pressure with increasing total hydrogen column density. This independently supports the suggestion that extremely strong DLAs (with log\log\,N(H) 22\sim 22) probe high-z galaxies at low impact parameters.Comment: 21 pages, 21 figures. Accepted for publication in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 08/03/2018
    Last time updated on 05/03/2018