229 research outputs found

    The newspaperman's desk book

    Full text link
    Thesis (M.S.)--Boston University, 1949. This item was digitized by the Internet Archive

    Cumulative mutagenesis of the basic residues in the 201-218 region of insulin-like growth factor (IGF)-binding protein-5 results in progressive loss of both IGF-I binding and inhibition of IGF-I biological action

    Get PDF
    We have reported previously that mutation of two conserved nonbasic amino acids (G203 and Q209) within the highly basic 201–218 region in the C-terminal domain of IGF-binding protein-5 (IGFBP-5) decreases binding to IGFs. This study reveals that cumulative mutagenesis of the 10 basic residues in this region, to create the C-Term series of mutants, ultimately results in a 15-fold decrease in the affinity for IGF-I and a major loss in heparin binding. We examined the ability of mutants to inhibit IGF-mediated survival of MCF-7 cells and were able to demonstrate that this depended not only upon the affinity for IGF-I, but also the kinetics of this interaction, because IGFBP-5 mutants with similar affinity constants (KD) values, but with different association (Ka) and dissociation (Kd) rate values, had markedly different inhibitory properties. In contrast, the affinity for IGF-I provided no predictive value in terms of the ability of these mutants to enhance IGF action when bound to the substratum. Instead, these C-Term mutants appeared to enhance the actions of IGF-I by a combination of increased dissociation of IGF-IGFBP complexes from the substratum, together with dissociation of IGF-I from IGFBP-5 bound to the substratum. These effects of the IGFBPs were dependent upon binding to IGF-I, because a non-IGF binding mutant (N-Term) was unable to inhibit or enhance the actions of IGF-I. These results emphasize the importance of the kinetics of association/dissociation in determining the enhancing or inhibiting effects of IGFBP-5 and demonstrate the ability to generate an IGFBP-5 mutant with exclusively IGF-enhancing activity

    Formation and dynamics of van der Waals molecules in buffer-gas traps

    Full text link
    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxations are too slow to affect trap lifetimes. However, helium-3-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag3He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps.Comment: 20 pages, 13 figure

    Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (METS) is an increasingly prevalent but poorly understood clinical condition characterized by insulin resistance, glucose intolerance, dyslipidemia, hypertension, and obesity. Increased oxidative stress catalyzed by accumulation of iron in excess of physiologic requirements has been implicated in the pathogenesis of METS, but the relationships between cause and effect remain uncertain. We tested the hypothesis that phlebotomy-induced reduction of body iron stores would alter the clinical presentation of METS, using a randomized trial.</p> <p>Methods</p> <p>In a randomized, controlled, single-blind clinical trial, 64 patients with METS were randomly assigned to iron reduction by phlebotomy (n = 33) or to a control group (n = 31), which was offered phlebotomy at the end of the study (waiting-list design). The iron-reduction patients had 300 ml of blood removed at entry and between 250 and 500 ml removed after 4 weeks, depending on ferritin levels at study entry. Primary outcomes were change in systolic blood pressure (SBP) and insulin sensitivity as measured by Homeostatic Model Assessment (HOMA) index after 6 weeks. Secondary outcomes included HbA1c, plasma glucose, blood lipids, and heart rate (HR).</p> <p>Results</p> <p>SBP decreased from 148.5 ± 12.3 mmHg to 130.5 ± 11.8 mmHg in the phlebotomy group, and from 144.7 ± 14.4 mmHg to 143.8 ± 11.9 mmHg in the control group (difference -16.6 mmHg; 95% CI -20.7 to -12.5; <it>P </it>< 0.001). No significant effect on HOMA index was seen. With regard to secondary outcomes, blood glucose, HbA1c, low-density lipoprotein/high-density lipoprotein ratio, and HR were significantly decreased by phlebotomy. Changes in BP and HOMA index correlated with ferritin reduction.</p> <p>Conclusions</p> <p>In patients with METS, phlebotomy, with consecutive reduction of body iron stores, lowered BP and resulted in improvements in markers of cardiovascular risk and glycemic control. Blood donation may have beneficial effects for blood donors with METS.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01328210">NCT01328210</a></p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/10/53</url></p

    Control of interneuron dendritic growth through NRG1/erbB4-mediated kalirin-7 disinhibition.

    Get PDF
    Neuregulin 1 (NRG1) is a secreted trophic factor that activates the postsynaptic erbB4 receptor tyrosine kinase. Both NRG1 and erbB4 have been repeatedly associated with schizophrenia, but their downstream targets are not well characterized. ErbB4 is highly abundant in interneurons, and NRG1-mediated erbB4 activation has been shown to modulate interneuron function, but the role for NRG1-erbB4 signaling in regulating interneuron dendritic growth is not well understood. Here we show that NRG1/erbB4 promote the growth of dendrites in mature interneurons through kalirin, a major dendritic Rac1-GEF. Recent studies have shown associations of the KALRN gene with schizophrenia. Our data point to an essential role of phosphorylation in kalirin-7's C terminus as the critical site for these effects. As reduced interneuron dendrite length occurs in schizophrenia, understanding how NRG1-erbB4 signaling modulates interneuron dendritic morphogenesis might shed light on disease-related alterations in cortical circuits

    Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development

    Get PDF
    SummaryThe impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators

    Embryonic Stem Cell-Derived L1 Overexpressing Neural Aggregates Enhance Recovery after Spinal Cord Injury in Mice

    Get PDF
    An obstacle to early stem cell transplantation into the acutely injured spinal cord is poor survival of transplanted cells. Transplantation of embryonic stem cells as substrate adherent embryonic stem cell-derived neural aggregates (SENAs) consisting mainly of neurons and radial glial cells has been shown to enhance survival of grafted cells in the injured mouse brain. In the attempt to promote the beneficial function of these SENAs, murine embryonic stem cells constitutively overexpressing the neural cell adhesion molecule L1 which favors axonal growth and survival of grafted and imperiled cells in the inhibitory environment of the adult mammalian central nervous system were differentiated into SENAs and transplanted into the spinal cord three days after compression lesion. Mice transplanted with L1 overexpressing SENAs showed improved locomotor function when compared to mice injected with wild-type SENAs. L1 overexpressing SENAs showed an increased number of surviving cells, enhanced neuronal differentiation and reduced glial differentiation after transplantation when compared to SENAs not engineered to overexpress L1. Furthermore, L1 overexpressing SENAs rescued imperiled host motoneurons and parvalbumin-positive interneurons and increased numbers of catecholaminergic nerve fibers distal to the lesion. In addition to encouraging the use of embryonic stem cells for early therapy after spinal cord injury L1 overexpression in the microenvironment of the lesioned spinal cord is a novel finding in its functions that would make it more attractive for pre-clinical studies in spinal cord regeneration and most likely other diseases of the nervous system
    • …
    corecore