274 research outputs found

    Postchemotherapy retroperitoneal lymph node dissection in patients with nonseminomatous testicular cancer: A single center experiences

    Get PDF
    Background: Testicular cancer accounts for about 1 - 1.5 of all malignancies in men. Radical orchiectomy is curative in 75 of patients with stage I disease, but advance stage with retroperitoneal lymph node involvement needs chemotherapy. All patients who have residual masses � 1 cm after chemotherapy should undergo postchemotherapy retroperitoneal lymph node dissection (PC-RPLND). Objectives: Treatment of advanced nonseminomatous testicular cancer is usually a combination of chemotherapy and surgery. We described our experience about postchemotherapy retroperitoneal lymph node dissection (PC-RPLND) in our center. Patients and Methods: In a retrospective cross-sectional study between 2006 and 2011, patients with a history of postchemotherapy retroperitoneal lymph node dissection (PC-RPLND) in Imam Khomeini hospital were evaluated. All patients had normal postchemotherapy serum tumor markers and primary nonseminomatous cancer. We reviewed retrospectively clinical, pathological, and surgical parameters associated with PC-RPLND in our center. Results: Twenty-one patients underwent bilateral PC-RPLND. Mean age was 26.3 years (ranged 16 - 47). Mean size of retroperitoneal mass after chemotherapy was 7.6 cm. Mean operative time was 198 minutes (120 - 246 minutes). Mean follow-up time was 38.6 months. Pathologic review showed presence of fibrosis/necrosis, viable germ cell tumor and teratoma in 8 (38.1), 10 (47.6) and 3 (14.28) patients, respectively. One patient in postoperative period of surgery and three patients in two first years after surgery were expired. Of 17 alive patients, only two (11.8) had not retrograde ejaculation. Conclusions: PC-RPLND is one the major operations in the field of urology, which is associated with significant adjunctive surgeries. In appropriate cases, PC-RPLND was associated with good cancer specific survival in tertiary oncology center. © 2015, Nephrology and Urology Research Center

    A new method for the estimation of variance matrix with prescribed zeros in nonlinear mixed effects models

    Get PDF
    We propose a new method for the Maximum Likelihood Estimator (MLE) of nonlinear mixed effects models when the variance matrix of Gaussian random effects has a prescribed pattern of zeros (PPZ). The method consists in coupling the recently developed Iterative Conditional Fitting (ICF) algorithm with the Expectation Maximization (EM) algorithm. It provides positive definite estimates for any sample size, and does not rely on any structural assumption on the PPZ. It can be easily adapted to many versions of EM.Comment: Accepted for publication in Statistics and Computin

    Violent and non-violent crimes against sex workers : the influence of the sex market on reporting practices in the United Kingdom

    Get PDF
    Previous research has shown that sex workers experience extremely high rates of victimization but are often reluctant to report their experiences to the police. This paper explores how the markets in which sex workers operate in the United Kingdom impact upon the violent and non-violent crimes they report to a national support organization and their willingness to report victimization to the police. We use a secondary quantitative data analysis of 2,056 crime reports submitted to the UK National Ugly Mugs (NUM) scheme between 2012 and 2016. The findings indicate that although violence is the most common crime type reported to NUM, sex workers operating in different markets report varying relative proportions of different types of victimization. We also argue that there is some variation in the level of willingness to share reports with the police across the different sex markets, even when the type crime, presence of violence, and other variables are taken into account. Our finding that street sex workers are most likely to report victimization directly to the police challenges previously held assumptions that criminalization is the key factor preventing sex workers from engaging with the police. Key words: sex work; violence; policing; reported victimizatio

    Oncoprotein DEK as a tissue and urinary biomarker for bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bladder cancer is a significant healthcare problem in the United States of America with a high recurrence rate. Early detection of bladder cancer is essential for removing the tumor with preservation of the bladder, avoiding metastasis and hence improving prognosis and long-term survival. The objective of this study was to analyze the presence of DEK protein in voided urine of bladder cancer patients as a urine-based bladder cancer diagnostic test.</p> <p>Methods</p> <p>We examined the expression of DEK protein by western blot in 38 paired transitional cell carcinoma (TCC) bladder tumor tissues and adjacent normal tissue. The presence of DEK protein in voided urine was analyzed by western blot in 42 urine samples collected from patients with active TCC, other malignant urogenital disease and healthy individuals.</p> <p>Results</p> <p>The DEK protein is expressed in 33 of 38 bladder tumor tissues with no expression in adjacent normal tissue. Based on our sample size, DEK protein is expressed in 100% of tumors of low malignant potential, 92% of tumors of low grade and in 71% of tumors of high grade. Next, we analyzed 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals for DEK protein expression by western blot analysis. We are the first to show that the DEK protein is present in the urine of bladder cancer patients. Approximately 84% of TCC patient urine specimens were positive for urine DEK.</p> <p>Conclusion</p> <p>Based on our pilot study of 38 bladder tumor tissue and 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals; DEK protein is expressed in bladder tumor tissue and voided urine of bladder cancer patients. The presence of DEK protein in voided urine is potentially a suitable biomarker for bladder cancer and that the screening for the presence of DEK protein in urine can be explored as a noninvasive diagnostic test for bladder cancer.</p

    In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer

    Full text link
    [EN] The present study reports on the use of low-functionality epoxy-based styrene¿acrylic oligomer (ESAO) to compatibilize immiscible ternary blends made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polylactide (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The addition during melt processing of low-functionality ESAO at two parts per hundred resin (phr) of biopolymer successfully changed the soften inclusion phase in the blend system to a thinner morphology, yielding biopolymer ternary blends with higher mechanical ductility and also improved oxygen barrier performance. The compatibilization achieved was ascribed to the in situ formation of a newly block terpolymer, i.e. PHBVb- PLA-b-PBAT, which was produced at the blend interface by the reaction of the multiple epoxy groups present in ESAO with the functional terminal groups of the biopolymers. This chemical reaction was mainly linear due to the inherently low functionality of ESAO and the more favorable reactivity of the epoxy groups with the carboxyl groups of the biopolymers, which avoided the formation of highly branched and/or cross-linked structures and thus facilitated the films processability. Therefore, the reactive blending of biopolymers at different mixing ratios with low-functionality ESAO represents a straightforward methodology to prepare sustainable plastics at industrial scale with different physical properties that can be of interest in, for instance, food packaging applications.This research was funded by the EU H2020 project YPACK (Reference number 773872) and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) with project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through his FPU Grant Number FPU15/03812. Torres-Giner also acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675).Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.; Balart, R.; Torres-Giner, S. (2019). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer. Journal of Polymers and the Environment. 27(1):84-96. https://doi.org/10.1007/s10924-018-1324-2S8496271Babu RP, O’Connor K, Seeram R (2013) Prog Biomater 2:8Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R (2017) J Food Saf 37:e12348Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Polym Test 61:421Zakharova E, Alla A, Martínez A, De Ilarduya S, Muñoz-Guerra (2015) RSC Adv 5:46395Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219McChalicher CWJ, Srienc F (2007) J Biotechnol 132:296Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361Vink ETH, Davies S (2015) Ind Biotechnol 11:167John RP, Nampoothiri KM, Pandey A (2006) Process Biochem 41:759Madhavan Nampoothiri K, Nair NR, John RP (2010) Biores Technol 101:8493Garlotta D (2001) J Polym Environ 9:63Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878Quiles-Carrillo L, Blanes-Martínez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Eur Polym J 98:402Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin Heidelberg, p 91Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199Brandelero RPH, Yamashita F, Grossmann MVE (2010) Carbohyd Polym 82:1102Muthuraj R, Misra M, Mohanty AK (2014) J Polym Environ 22:336Porter RS, Wang L-H (1992) Polymer 33(10): 2019Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707Muthuraj R, Misra M, Mohanty AK (2017) J Appl Polym Sci 135:45726Ryan AJ (2002) Nat Mater 1:8Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Polymer 105:1Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179Zeng J-B, Li K-A, Du A-K (2015) RSC Adv 5:32546Xanthos M, Dagli SS (1991) Polym Eng Sci 31:929Sundararaj U, Macosko CW (1995) Macromolecules 28:2647Milner ST, Xi H (1996) J Rheol 40:663Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Eur Polym J 84:693Lehermeier HJ, Dorgan JR (2001) Polym Eng Sci 41:2172Liu B, Xu Q (2013) J Mater Sci Chem Eng 1:9Eslami H, Kamal MR (2013) J Appl Polym Sci 129:2418Loontjens T, Pauwels K, Derks F, Neilen M, Sham CK, Serné M (1997) J Appl Polym Sci 65:1813Ojijo V, Ray SS (2015) Polymer 80:1Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, Van Der Meer R (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. In: Technical papers, regional technical conference—society of plastics engineers, p. 3/1678Utracki LA (2002) Can J Chem Eng 80:1008Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des (1980–2015) 36: 604Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Polym Test 43:27Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) J Wuhan Univ Technol Mater Sci Ed 25:774Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohyd Polym 123:275Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Macromol Mater Eng 300:299Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) J Polym Environ 24:23Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) J Appl Polym Sci 122:914Miyata T, Masuko T (1998) Polymer 39:5515Muthuraj R, Misra M, Mohanty AK (2015) J Appl Polym Sci 132:42189Ren J, Fu H, Ren T, Yuan W (2009) Carbohyd Polym 77:576Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Mater Des 108:648Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Process Biochem 35:573Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Polym Test 42:115Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250Chinsirikul W, Rojsatean J, Hararak B, Kerddonfag N, Aontee A, Jaieau K, Kumsang P, Sripethdee C (2015) Packag Technol Sci 28:741Auras R, Harte B, Selke S (2004) J Appl Polym Sci 92:1790Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohyd Polym 71:235Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheeting 23:133Lagaron JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, Cambridge, p 
    corecore