294 research outputs found

    A Case Study of Applying Blended Learning in an Accelerated Post-Baccalaureate Teacher Education Program

    Get PDF
    Blended learning has potential to improve teacher education in terms of accessibility and quality. This paper reports findings from a case study with mixed methods data collection analysis to examine the application of blended learning in accelerated post-baccalaureate teacher education at the program level. One hundred and sixty-seven recent graduates from a chosen teacher education program participated in the study by completing an online survey. Eight of the survey participants and six faculty members were interviewed. Findings from this study support the viability and benefits of applying blended learning in teacher education at the program level. On the other hand, teacher candidates and faculty members reported challenges in such blended learning teacher education programs. Suggestions for applying blended learning in teacher education at the program level are discussed in this paper

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Impact of materials technology on the breeding blanket design – Recent progress and case studies in materials technology

    Get PDF
    A major part in the EUROfusion materials research program is dedicated to characterize and quantify nuclear fusion specific neutron damage in structural materials. While the majority of irradiation data gives a relatively clear view on the displacement damage, the effect of transmutation – i.e. especially hydrogen and helium production in steels – is not yet explored very well. However, few available results indicate that EUROFER-type steels will reach their operating limit as soon as the formation of helium bubbles reaches a critical amount or size. At that point, the material would fail due to embrittlement at the considered load. This paper presents a strategy for the mitigation of the before-mentioned problem using the following facts: • the neutron dose and related transmutation rate decreases quickly inside the first wall, that is, only a plasma-near area is extremely loaded • nanostructured oxide dispersion strengthened (ODS) steels may have an enormous trapping effect on helium and hydrogen, which would suppress the formation of large helium bubbles • compared to conventional steels, ODS steels show improved irradiation tensile ductility and creep strength In summary, producing the plasma facing, highly neutron and heat loaded part of blankets by an ODS steel, while using EUROFER97 for everything else, would allow a higher heat flux as well as a longer operating period. Consequently, we (1) developed and produced 14 % Cr ferritic ODS steel plates. (2) We fabricated a mockup with 5 cooling channels and a plated first wall of ODS steel, using the same production processes as for a real component. And finally, (3) we performed high heat flux tests in the HELOKA facility (Helium Loop Karlsruhe at KIT) applying short and up to 2 h long pulses, in which the operating temperature limit for EUROFER97 (i.e., 550 °C) was finally exceeded by 100 K. Thereafter, microstructure and defect analyses did not reveal defects or recognizable damage. Only a heat affected zone in the EUROFER/ODS steel interface could be detected. This demonstrates that the use of ODS steel could make a decisive difference in the future design and performance of breeding blankets

    Fabrication routes for advanced first wall design alternatives

    Get PDF
    In future nuclear fusion reactors, plasma facing components have to sustain specific neutron damage. While the majority of irradiation data provides a relatively clear picture of the displacement damage, the effect of helium transmutation is not yet explored in detail. Nevertheless, available results from simulation experiments indicate that 9%-chromium steels will reach their operating limit as soon as the growing helium bubbles extent a critical size. At that point, the material would most probably fail due to grain boundary embrittlement. In this contribution, we present a strategy for the mitigation of the before-mentioned problem using the following facts. (1) The neutron dose and related transmutation rate decreases quickly inside the first wall of the breeding blankets, that is, only a plasma-near area is extremely loaded. (2) Nanostructured oxide dispersion strengthened (ODS) steels may have an enormous trapping effect on helium, which would suppress the formation of large helium bubbles for a much longer period. (3) Compared to conventional steels, ODS steels also provide improved irradiation tensile ductility and creep strength. Therefore, a design, based on the fabrication of the plasma facing and highly neutron and heat loaded parts of blankets by an ODS steel, while using EUROFER97 for everything else, would extend the operating time and enable a higher heat flux. Consequently, we (i) developed and produced 14%Cr ferritic ODS steel plates and (ii) optimized and demonstrated a scalable industrial production route. (iii) We fabricated a mock-up with five cooling channels and a plated first wall of ODS steel, using the same production processes as for a real component. (iv) Finally, we performed high heat flux tests in the Helium Loop Karlsruhe, applying a few hundred short and a few 2 h long pulses, in which the operating temperature limit for EUROFER97 (i.e. 550 ◦C) was finally exceeded by 100 K. (v) Thereafter, microstructure and defect analyses did not reveal critical defects or recognizable damage. Only a heat affected zone in the EUROFER/ODS steel interface could be detected. However, a solution to prohibit the formation of such heat affected zones is given. These research contributions demonstrate that the use of ODS steel is not only feasible and affordable but could make a decisive difference in the future design and performance of breeding blankets

    Opposing prognostic relevance of junction plakoglobin in distinct prostate cancer patient subsets

    Get PDF
    Both oncogenic and tumor suppressor functions have been described for junction plakoglobin (JUP), also known as γ-catenin. To clarify the role of JUP in prostate cancer, JUP protein expression was immunohistochemically detected in a tissue microarray containing 11 267 individual prostatectomy specimens. Considering all patients, high JUP expression was associated with adverse tumor stage (P = 0.0002), high Gleason grade (P < 0.0001), and lymph node metastases (P = 0.011). These associations were driven mainly by the subset without TMPRSS2:ERG fusion, in which high JUP expression was an independent predictor of poor prognosis (multivariate analyses, P = 0.0054) and early biochemical recurrence (P = 0.0003). High JUP expression was further linked to strong androgen receptor expression (P < 0.0001), high cell proliferation, and PTEN and FOXP1 deletion (P < 0.0001). In the ERG-negative subset, high JUP expression was additionally linked to MAP3K7 (P = 0.0007) and CHD1 deletion (P = 0.0021). Contrasting the overall prognostic effect of JUP, low JUP expression indicated poor prognosis in the fraction of CHD1-deleted patients (P = 0.039). In this subset, the association of high JUP and high cell proliferation was specifically absent. In conclusion, the controversial biological roles of JUP are reflected by antagonistic prognostic effects in distinct prostate cancer patient subsets

    Setting The Pace: Examining Cognitive Processing in MOOC Discussion Forums With Automatic Text Analysis

    Get PDF
    Learning analytics focuses on extracting meaning from large amounts of data. One of the largest datasets in education comes from Massive Open Online Courses (MOOCs) that typically feature enrollments in the tens of thousands. Analyzing MOOC discussion forums presents logistical issues, resulting chiefly from the size of the dataset, which can create challenges for understanding and adequately describing student behaviors. Utilizing automatic text analysis, this study built a hierarchical linear model that examines the influence of the pacing condition of a massive open online course (MOOC), whether it is self-paced or instructor-paced, on the demonstration of cognitive processing in a HarvardX MOOC. The analysis of 2,423 discussion posts generated by 671 students revealed the number of dictionary words used were positively associated with cognitive processing while analytical thinking and clout was negatively associated. We found that none of the student background information (gender, education), status of the course engagement (explored or completed), or the course pace (self-paced versus instructor paced) significantly influenced the cognitive processing of the postings

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreflectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeflexibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments

    Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    Get PDF
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature
    corecore