1,135 research outputs found

    Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae)

    Get PDF
    A new zooxanthellate reef-dwelling scleractinian coral species, Cyphastrea salae sp. n. (Scleractinia, Merulinidae), is described from Lord Howe Island Australia. The new species can be distinguished morphologically from the only other congeneric species on Lord Howe Island, C. microphthalma, by the number of primary septa (12 vs. 10) and the much taller corallites (mean +/- SE: 1.0 +/- 0.07 mm v 0.4 +/- 0.04 mm). The relationship of C. salae to four of the other eleven currently accepted species in the genus was explored through analyses of nuclear (28S rDNA) and mitochondrial (noncoding intergenic region) gene sequences. Cyphastrea salae sp. n. forms a strongly supported clade that is distinct from a clade containing three species found commonly in Australia, C. chalcidicum, C. serailia, and C. microphthalma. One specimen was also found in the Solitary Islands, another high latitude location in south-eastern Australia. The discovery of a new species in the genus Cyphastrea on high latitude reefs in south-eastern Australia suggests that other new species might be found among more diverse genera represented here and that the scleractinian fauna of these isolated locations is more distinct than previously recognised

    Integrated Array Tomography for 3D Correlative Light and Electron Microscopy

    Get PDF
    Volume electron microscopy (EM) of biological systems has grown exponentially in recent years due to innovative large-scale imaging approaches. As a standalone imaging method, however, large-scale EM typically has two major limitations: slow rates of acquisition and the difficulty to provide targeted biological information. We developed a 3D image acquisition and reconstruction pipeline that overcomes both of these limitations by using a widefield fluorescence microscope integrated inside of a scanning electron microscope. The workflow consists of acquiring large field of view fluorescence microscopy (FM) images, which guide to regions of interest for successive EM (integrated correlative light and electron microscopy). High precision EM-FM overlay is achieved using cathodoluminescent markers. We conduct a proof-of-concept of our integrated workflow on immunolabelled serial sections of tissues. Acquisitions are limited to regions containing biological targets, expediting total acquisition times and reducing the burden of excess data by tens or hundreds of GBs

    Integrated Array Tomography for 3D Correlative Light and Electron Microscopy

    Get PDF
    Volume electron microscopy (EM) of biological systems has grown exponentially in recent years due to innovative large-scale imaging approaches. As a standalone imaging method, however, large-scale EM typically has two major limitations: slow rates of acquisition and the difficulty to provide targeted biological information. We developed a 3D image acquisition and reconstruction pipeline that overcomes both of these limitations by using a widefield fluorescence microscope integrated inside of a scanning electron microscope. The workflow consists of acquiring large field of view fluorescence microscopy (FM) images, which guide to regions of interest for successive EM (integrated correlative light and electron microscopy). High precision EM-FM overlay is achieved using cathodoluminescent markers. We conduct a proof-of-concept of our integrated workflow on immunolabelled serial sections of tissues. Acquisitions are limited to regions containing biological targets, expediting total acquisition times and reducing the burden of excess data by tens or hundreds of GBs.</p

    Van hieros gamos tot Happinez

    Get PDF
    The Unification of the Mediterranean World (400 BC - 400 AD

    Retarding Field Integrated Fluorescence and Electron Microscope

    Get PDF
    The authors present the application of a retarding field between the electron objective lens and sample in an integrated fluorescence and electron microscope. The retarding field enhances signal collection and signal strength in the electron microscope. This is beneficial for samples prepared for integrated fluorescence and electron microscopy as the amount of staining material added to enhance electron microscopy signal is typically lower compared to conventional samples in order to preserve fluorescence. We demonstrate signal enhancement through the applied retarding field for both 80-nm post-embedding immunolabeled sections and 100-nm in-resin preserved fluorescence sections. Moreover, we show that tuning the electron landing energy particularly improves imaging conditions for ultra-thin (50 nm) sections, where optimization of both retarding field and interaction volume contribute to the signal improvement. Finally, we show that our integrated retarding field setup allows landing energies down to a few electron volts with 0.3 eV dispersion, which opens new prospects for assessing electron beam induced damage by in situ quantification of the observed bleaching of the fluorescence following irradiation

    The Density of States in High-Tc Superconductors Vortices

    Full text link
    We calculated the electronic structure of a vortex in a pseudogapped superconductor within a model featuring strong correlations. With increasing strength of the correlations, the BCS core states are suppressed and the spectra in and outside the core become similar. If the correlations are short-range, we find new core states in agreement with the observations in YBaCuO and BiSrCaCuO. Our results point to a common phenomenology for these two systems and indicate that normal-state correlations survive below Tc without taking part in the overall phase coherence.Comment: REVTeX 4, 5 pages, 2 EPS figures. Some changes to the text; new figures; references update

    Coherent source and connectivity analysis on simultaneously measured EEG and MEG data during isometric contraction

    Get PDF
    The most well-known non-invasive electric and magnetic field measurement modalities are the electroencephalography (EEG) and magnetoencephalography (MEG). The first aim of the study was to implement the recently developed realistic head model which uses an integrative approach for both the modalities. The second aim of this study was to find the network of coherent sources and the modes of interactions within this network during isometric contraction (ISC) at (15-30 Hz) in healthy subjects. The third aim was to test the effective connectivity revealed by both the modalities analyzing them separately and combined. The Welch periodogram method was used to estimate the coherence spectrum between the EEG and the electromyography (EMG) signals followed by the realistic head modelling and source analysis method dynamic imaging of coherent sources (DICS) to find the network of coherent sources at the individual peak frequency within the beta band in healthy subjects. The last step was to identify the effective connectivity between the identified sources using the renormalized partial directed coherence method. The cortical and sub-cortical network comprised of the primary sensory motor cortex (PSMC), secondary motor area (SMA), and the cerebellum (C). The cortical and sub-cortical network responsible for the isometric contraction was similar in both the modalities when analysing them separately and combined. The SNR was not significantly different between the two modalities separately and combined. However, the coherence values were significantly higher in the combined modality in comparison to each of the modality separately. The effective connectivity analysis revealed plausible additional connections in the combined modality analysis

    Effect of Disorder on Ultrafast Exciton Dynamics Probed by Single Molecule Spectroscopy

    Get PDF
    We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated
    corecore