1,351 research outputs found

    Homiletics: Sermon Studies for the New Church Year

    Get PDF
    Sermon Studies for the New Church Yea

    Active elastohydrodynamics of vesicles in narrow, blind constrictions

    Get PDF
    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semi-analytical theory for active transport of vesicles that are forced through such constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel, and find that relative to an open channel, transport into a blind end leads to the formation of an effective lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of non-local hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries

    Simulation of fluid flow in hydrophobic rough microchannels

    Full text link
    Surface effects become important in microfluidic setups because the surface to volume ratio becomes large. In such setups the surface roughness is not any longer small compared to the length scale of the system and the wetting properties of the wall have an important influence on the flow. However, the knowledge about the interplay of surface roughness and hydrophobic fluid-surface interaction is still very limited because these properties cannot be decoupled easily in experiments. We investigate the problem by means of lattice Boltzmann (LB) simulations of rough microchannels with a tunable fluid-wall interaction. We introduce an ``effective no-slip plane'' at an intermediate position between peaks and valleys of the surface and observe how the position of the wall may change due to surface roughness and hydrophobic interactions. We find that the position of the effective wall, in the case of a Gaussian distributed roughness depends linearly on the width of the distribution. Further we are able to show that roughness creates a non-linear effect on the slip length for hydrophobic boundaries.Comment: 10 pages, 5 figure

    Simulations of slip flow on nanobubble-laden surfaces

    Get PDF
    On microstructured hydrophobic surfaces, geometrical patterns may lead to the appearance of a superhydrophobic state, where gas bubbles at the surface can have a strong impact on the fluid flow along such surfaces. In particular, they can strongly influence a detected slip at the surface. We present two-phase lattice Boltzmann simulations of a flow over structured surfaces with attached gas bubbles and demonstrate how the detected slip depends on the pattern geometry, the bulk pressure, or the shear rate. Since a large slip leads to reduced friction, our results allow to assist in the optimization of microchannel flows for large throughput.Comment: 22 pages, 12 figure

    Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels

    Full text link
    Various experiments have found a boundary slip in hydrophobic microchannel flows, but a consistent understanding of the results is still lacking. While Molecular Dynamics (MD) simulations cannot reach the low shear rates and large system sizes of the experiments, it is often impossible to resolve the needed details with macroscopic approaches. We model the interaction between hydrophobic channel walls and a fluid by means of a multi-phase lattice Boltzmann model. Our mesoscopic approach overcomes the limitations of MD simulations and can reach the small flow velocities of known experiments. We reproduce results from experiments at small Knudsen numbers and other simulations, namely an increase of slip with increasing liquid-solid interactions, the slip being independent of the flow velocity, and a decreasing slip with increasing bulk pressure. Within our model we develop a semi-analytic approximation of the dependence of the slip on the pressure.Comment: 7 pages, 4 figure

    Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann

    Full text link
    On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simulation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.Comment: 13 pages, 4 figures, revised versio

    Emulsification in binary liquids containing colloidal particles: a structure-factor analysis

    Get PDF
    We present a quantitative confocal-microscopy study of the transient and final microstructure of particle-stabilised emulsions formed via demixing in a binary liquid. To this end, we have developed an image-analysis method that relies on structure factors obtained from discrete Fourier transforms of individual frames in confocal image sequences. Radially averaging the squared modulus of these Fourier transforms before peak fitting allows extraction of dominant length scales over the entire temperature range of the quench. Our procedure even yields information just after droplet nucleation, when the (fluorescence) contrast between the two separating phases is scarcely discernable in the images. We find that our emulsions are stabilised on experimental time scales by interfacial particles and that they are likely to have bimodal droplet-size distributions. We attribute the latter to coalescence together with creaming being the main coarsening mechanism during the late stages of emulsification and we support this claim with (direct) confocal-microscopy observations. In addition, our results imply that the observed droplets emerge from particle-promoted nucleation, possibly followed by a free-growth regime. Finally, we argue that creaming strongly affects droplet growth during the early stages of emulsification. Future investigations could clarify the link between quench conditions and resulting microstructure, paving the way for tailor-made particle-stabilised emulsions from binary liquids.Comment: http://iopscience.iop.org/0953-8984/22/45/455102

    Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations

    Full text link
    During the last decade, lattice-Boltzmann (LB) simulations have been improved to become an efficient tool for determining the permeability of porous media samples. However, well known improvements of the original algorithm are often not implemented. These include for example multirelaxation time schemes or improved boundary conditions, as well as different possibilities to impose a pressure gradient. This paper shows that a significant difference of the calculated permeabilities can be found unless one uses a carefully selected setup. We present a detailed discussion of possible simulation setups and quantitative studies of the influence of simulation parameters. We illustrate our results by applying the algorithm to a Fontainebleau sandstone and by comparing our benchmark studies to other numerical permeability measurements in the literature.Comment: 14 pages, 11 figure

    From dot to ring: the role of friction on the deposition pattern of a drying colloidal suspension droplet

    Get PDF
    The deposition of particles on a substrate by drying a colloidal suspension droplet is at the core of applications ranging from traditional printing on paper to printable electronics or photovoltaic devices. The self-pinning induced by the accumulation of particles at the contact line plays an important role in the formation of the deposition. In this paper, we investigate both numerically and theoretically, the effect of friction between the particles and the substrate on the deposition pattern. Without friction, the contact line shows a stick-slip behaviour and a dot-like deposit is left after the droplet is evaporated. By increasing the friction force, we observe a transition from a dot-like to a ring-like deposit. We propose a theoretical model to predict the effective radius of the particle deposition as a function of the friction force. Our theoretical model predicts a critical friction force when the self-pinning happens and the effective radius of deposit increases with increasing friction force, confirmed by our simulation results. Our results can find implications for developing active control strategies for the deposition of drying droplets.Comment: 11 pages, 10 figure

    Solubility isotope effects in aqueous solutions of methane

    Get PDF
    The isotope effect on the Henry's law coefficients of methane in aqueous solution (H/D and C-12/C-13 substitution) are interpreted using the statistical mechanical theory of condensed phase isotope effects. The missing spectroscopic data needed for the implementation of the theory were obtained either experimentally (infrared measurements), by computer simulation (molecular dynamics technique), or estimated using the Wilson's GF matrix method. The order of magnitude and sign of both solute isotope effects can be predicted by the theory. Even a crude estimation based on data from previous vapor pressure isotope effect studies of pure methane at low temperature can explain the inverse effect found for the solubility of deuterated methane in water. (C) 2002 American Institute of Physics
    corecore