4,811 research outputs found
Exact results for nonlinear ac-transport through a resonant level model
We obtain exact results for the transport through a resonant level model
(noninteracting Anderson impurity model) for rectangular voltage bias as a
function of time. We study both the transient behavior after switching on the
tunneling at time t = 0 and the ensuing steady state behavior. Explicit
expressions are obtained for the ac-current in the linear response regime and
beyond for large voltage bias. Among other effects, we observe current ringing
and PAT (photon assisted tunneling) oscillations.Comment: 7 page
Radar interferometry based settlement monitoring in tunnelling: visualisation and accuracy analyses
Background
The accurate, efficient and economical monitoring of settlements caused by tunnel boring machines, especially in regions of particular interest such as critical inner city areas, has become an important aspect of the tunnelling operation. Besides conventional terrestrial based methods to capture settlements, satellite based techniques that can accurately determine displacements remotely, are increasingly being used to augment standard terrestrial measurements. However, not much attention has been paid to analyse the accuracy of satellite based measurement data. In addition, there is also a lack of studies on how to visualise the resulting huge amount of data in the context of both the tunnel advancement and the existing building infrastructure.
Methods
This paper introduces the basics of settlement monitoring using radar interferometry methods, in particular showing the results obtained by processing radar images from the TerraSAR-X satellite to monitor a downtown construction site in Düsseldorf, Germany, where a new underground line (“Wehrhahn-Linie”) is being built. By comparing terrestrial measurements with remote satellite based settlement data in temporal and spatial corridors, the accuracy of the radar interferometry method is shown. Moreover, a 4D visualisation concept is presented that correlates satellite and terrestrial based settlement data correlated with above-ground buildings and boring machine performance parameters within a Virtual Reality (VR) environment.
Results
By comparing up to 23,000 pairs of satellite and terrestrial based settlement data points of a real tunnelling project an accuracy of about ±1.5 mm in the measurement of deformation using the method of radar interferometry in urban areas can be stated. In addition, providing a visual analysis of data sources within a VR environment, the accuracy of terrestrial and satellite-based measurements can be visualised in different time steps. Sources of error that affect the degree of accuracy, such as atmospheric conditions, systematic errors in the evaluation of radar images and local events in the spatial corridor, can be quantified. In addition, the 4D visualisation can help reveal direct interdependencies between settlement data and boring machine performance data.
Conclusions
The Persistent Scatterer Interferometry (PSI) based on high resolution radar images of the TerraSAR-X satellite, in combination with conventional ground-based terrestrial measurements, provides a new settlement monitoring approach in tunnelling. For example, due to minimized surveying works and disruptions of construction activities on site and due to the large settlement area coming with a high magnitude of settlement data points, this combined monitoring approach is very practical and economical. Moreover, by visualizing the settlement data properly, the risk of damage of surface structures can be analysed and understood more precisely, which increases the safety of underground works
Mapping protein interactions in the active TOM-TIM23 supercomplex
Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency
A new case of 3-hydroxyacyl-CoA dehydrogenase deficiency is described with a relatively benign course
Prototyping of petalets for the Phase-II Upgrade of the silicon strip tracking detector of the ATLAS Experiment
In the high luminosity era of the Large Hadron Collider, the HL-LHC, the
instantaneous luminosity is expected to reach unprecedented values, resulting
in about 200 proton-proton interactions in a typical bunch crossing. To cope
with the resultant increase in occupancy, bandwidth and radiation damage, the
ATLAS Inner Detector will be replaced by an all-silicon system, the Inner
Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and
exploits the concept of modularity. Prototyping and testing of various strip
detector components has been carried out. This paper presents the developments
and results obtained with reduced-size structures equivalent to those foreseen
to be used in the forward region of the silicon strip detector. Referred to as
petalets, these structures are built around a composite sandwich with embedded
cooling pipes and electrical tapes for routing the signals and power. Detector
modules built using electronic flex boards and silicon strip sensors are glued
on both the front and back side surfaces of the carbon structure. Details are
given on the assembly, testing and evaluation of several petalets. Measurement
results of both mechanical and electrical quantities are shown. Moreover, an
outlook is given for improved prototyping plans for large structures.Comment: 22 pages for submission for Journal of Instrumentatio
Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis
Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB
Search for charged Higgs bosons decaying to top and bottom quarks in ppbar collisions
We describe a search for production of a charged Higgs boson, q \bar{q'} ->
H^+, reconstructed in the t\bar{b} final state in the mass range 180 <= M_{H^+}
<= 300 GeV. The search was undertaken at the Fermilab Tevatron collider with a
center-of-mass energy sqrt{s} = 1.96 TeV and uses 0.9 fb^{-1} of data collected
with the D0 detector. We find no evidence for charged Higgs boson production
and set upper limits on the production cross section in the Types I, II and III
two-Higgs-doublet models (2HDMs). An excluded region in the (M_{H^+},tan\beta)
plane for Type I 2HDM is presented.Comment: Submitted to Phys. Rev. Letter
Measurement of the forward-backward charge asymmetry and extraction of sin^2Theta^{eff}_W in ppbar -> Z/\gamma^{*}+X -> e+e+X events produced at \sqrt{s}=1.96 TeV
We present a measurement of the forward-backward charge asymmetry ()
in events at a center-of-mass energy
of 1.96 TeV using 1.1 fb of data collected with the D0 detector at the
Fermilab Tevatron collider. is measured as a function of the invariant
mass of the electron-positron pair, and found to be consistent with the
standard model prediction. We use the measurement to extract the
effective weak mixing angle .Comment: 7 Pages, 1 Figure, 3 Tables, Accepted by Phys. Rev. Let
- …