2,844 research outputs found

    Enhanced Parallel Generation of Tree Structures for the Recognition of 3D Images

    Get PDF
    Segmentations of a digital object based on a connectivity criterion at n-xel or sub-n-xel level are useful tools in image topological analysis and recognition. Working with cell complex analogous of digital objects, an example of this kind of segmentation is that obtained from the combinatorial representation so called Homological Spanning Forest (HSF, for short) which, informally, classifies the cells of the complex as belonging to regions containing the maximal number of cells sharing the same homological (algebraic homology with coefficient in a field) information. We design here a parallel method for computing a HSF (using homology with coefficients in Z/2Z) of a 3D digital object. If this object is included in a 3D image of m1 × m2 × m3 voxels, its theoretical time complexity order is near O(log(m1 + m2 + m3)), under the assumption that a processing element is available for each voxel. A prototype implementation validating our results has been written and several synthetic, random and medical tridimensional images have been used for testing. The experiments allow us to assert that the number of iterations in which the homological information is found varies only to a small extent from the theoretical computational time.Ministerio de Economía y Competitividad MTM2016-81030-

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    Gating-induced large aqueous volumetric remodeling and aspartate tolerance in the voltage sensor domain of Shaker K+ channels

    Get PDF
    Indexación: Scopus.ACKNOWLEDGMENTS. We thank Chris Lingle and Yu Zhou (Washington University) for critical reading of the manuscript and Victoria Prado for Xenopus care and oocyte preparation. We also thank Millennium Scientific Initiative P029-022-F. This work was supported by Fondecyt Postdoctoral Grants 3170599 (to I.D.-F.) and 3160321 (to H.M.).Neurons encode electrical signals with critically tuned voltage-gated ion channels and enzymes. Dedicated voltage sensor domains (VSDs) in these membrane proteins activate coordinately with an unresolved structural change. Such change conveys the transmembrane translocation of four positively charged arginine side chains, the voltage-sensing residues (VSRs; R1–R4). Countercharges and lipid phosphohead groups likely stabilize these VSRs within the low-dielectric core of the protein. However, the role of hydration, a sign-independent charge stabilizer, remains unclear. We replaced all VSRs and their neighboring residues with negatively charged aspartates in a voltage-gated potassium channel. The ensuing mild functional effects indicate that hydration is also important in VSR stabilization. The voltage dependency of the VSR aspartate variants approached the expected arithmetic summation of charges at VSR positions, as if negative and positive side chains faced similar pathways. In contrast, aspartates introduced between R2 and R3 did not affect voltage dependence as if the side chains moved outside the electric field or together with it, undergoing a large displacement and volumetric remodeling. Accordingly, VSR performed osmotic work at both internal and external aqueous interfaces. Individual VSR contributions to volumetric works approached arithmetical additivity but were largely dissimilar. While R1 and R4 displaced small volumes, R2 and R3 volumetric works were massive and vectorially opposed, favoring large aqueous remodeling during VSD activation. These diverse volumetric works are, at least for R2 and R3, not compatible with VSR translocation across a unique stationary charge transfer center. Instead, VSRs may follow separated pathways across a fluctuating low-dielectric septum. © National Academy of Sciences. All rights reserved.https://www.pnas.org/content/115/32/820

    A graceful multiversal link of particle physics to cosmology

    Get PDF
    In this paper we work out a multiverse scenario whose physical characteristics enable us to advance the following the conjecture that whereas the physics of particles and fields is confined to live in the realm of the whole multiverse formed by finite-time single universes, that for our observable universe must be confined just in one of the infinite number of universes of the multiverse when such a universe is consistently referred to an infinite cosmic time. If this conjecture is adopted then some current fundamental problems that appear when one tries to make compatible particle physics and cosmology- such as that for the cosmological constant, the arrow of time and the existence of a finite proper size of the event horizon- can be solved.Comment: 10 pages, LaTe

    The Big Trip and Wheeler-DeWitt equation

    Full text link
    Of all the possible ways to describe the behavior of the universe that has undergone a big trip the Wheeler-DeWitt equation should be the most accurate -- provided, of course, that we employ the correct formulation. In this article we start by discussing the standard formulation introduced by Gonz\'alez-D\'iaz and Jimenez-Madrid, and show that it allows for a simple yet efficient method of the solution's generation, which is based on the Moutard transformation. Next, by shedding the unnecessary restrictions, imposed on aforementioned standard formulation we introduce a more general form of the Wheeler-DeWitt equation. One immediate prediction of this new formula is that for the universe the probability to emerge right after the big trip in a state with w=w0w=w_0 will be maximal if and only if w0=1/3w_0=-1/3.Comment: accepted in Astrophysics and Space Scienc

    Accretion and photodesorption of CO ice as a function of the incident angle of deposition

    Get PDF
    Non-thermal desorption of inter- and circum-stellar ice mantles on dust grains, in particular ultraviolet photon-induced desorption, has gained importance in recent years. These processes may account for the observed gas phase abundances of molecules like CO toward cold interstellar clouds. Ice mantle growth results from gas molecules impinging on the dust from all directions and incidence angles. Nevertheless, the effect of the incident angle for deposition on ice photo-desorption rate has not been studied. This work explores the impact on the accretion and photodesorption rates of the incidence angle of CO gas molecules with the cold surface during deposition of a CO ice layer. Infrared spectroscopy monitored CO ice upon deposition at different angles, ultraviolet-irradiation, and subsequent warm-up. Vacuum-ultraviolet spectroscopy and a Ni-mesh measured the emission of the ultraviolet lamp. Molecules ejected from the ice to the gas during irradiation or warm-up were characterized by a quadrupole mass spectrometer. The photodesorption rate of CO ice deposited at 11 K and different incident angles was rather stable between 0 and 45^{\circ}. A maximum in the CO photodesorption rate appeared around 70^{\circ}-incidence deposition angle. The same deposition angle leads to the maximum surface area of water ice. Although this study of the surface area could not be performed for CO ice, the similar angle dependence in the photodesorption and the ice surface area suggests that they are closely related. Further evidence for a dependence of CO ice morphology on deposition angle is provided by thermal desorption of CO ice experiments

    Identificación precoz del riesgo post-operatorio en las prótesis totales de rodilla

    Get PDF
    El objetivo de este estudio es conocer la relación que mantienen diversos factores clínicos, quirúrgicos y hemostáticos analizados antes de la intervención quirúrgica, con la presencia de trombosis venosa (TV) post-operatoria, diagnosticada mediante unos parámetros preestablecidos. Se evaluaron 38 pacientes sometidos a prótesis total de rodilla (PTR). La edad media, fue de 66 años, y se administró profilaxix antitrombótica a todos los pacientes con Heparina (7000 u x 12 h.) y 200 mg de Aspirina. El protocolo establecido, incluyó cuatro periodos en los que se valoraron parámetros clínicos, bioquímicos y gradiente alveolo-arterial (AaD02). El AaD02 con valores de 0,6 y 0,7, resultó ser un excelente índice predictivo de riesgo.The objective of this study is to know the relation that different clinical, surgical and determined haemostatic factors maintain befote a surgical operation with the presence and charasteristics of the postoperative vein trombosis (VT). Thirty eight patients on which a Total Prosthesis of Knee was performed were evaluated. The average age was 66 years. Prophylatica anticoagulants were given in cases, using included four steps in where valued clinicals and biochemistries parameters and the arterial-alveole gradient (AaD02). The AaD02 with values of 0,6 and 0,7 resulted an excellent a predictive index of risk

    Lattice dynamics of mixed semiconductors (Be,Zn)Se from first-principles calculations

    Get PDF
    Vibration properties of Zn(1-x)Be(x)Se, a mixed II-VI semiconductor haracterized by a high contrast in elastic properties of its pure constituents, ZnSe and BeSe, are simulated by first-principles calculations of electronic structure, lattice relaxation and frozen phonons. The calculations within the local density approximation has been done with the Siesta method, using norm-conserving pseudopotentials and localized basis functions; the benchmark calculations for pure endsystems were moreover done also by all-electron WIEN2k code. An immediate motivation for the study was to analyze, at the microscopic level, the appearance of anomalous phonon modes early detected in Raman spectra in the intermediate region (20 to 80%) of ZnBe concentration. This was early discussed on the basis of a percolation phenomenon, i.e., the result of the formation of wall-to-wall --Be--Se-- chains throughout the crystal. The presence of such chains was explicitly allowed in our simulation and indeed brought about a softening and splitting off of particular modes, in accordance with experimental observation, due to a relative elongation of Be--Se bonds along the chain as compared to those involving isolated Be atoms. The variation of force constants with interatomic distances shows common trends in relative independence on the short-range order.Comment: 11 pages, 10 figures, to be published in Phys. Rev.

    Census of HII regions in NGC 6754 derived with MUSE: Constraints on the metal mixing scale

    Get PDF
    We present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197,637 individual spectra, using Integral Field Spectrocopy (IFS) recently acquired with the MUSE instrument during its Science Verification program. The data cover the entire galaxy out to ~2 effective radii (re ), sampling its morphological structures with unprecedented spatial resolution for a wide-field IFU. A complete census of the H ii regions limited by the atmospheric seeing conditions was derived, comprising 396 individual ionized sources. This is one of the largest and most complete catalogue of H ii regions with spectroscopic information in a single galaxy. We use this catalogue to derive the radial abundance gradient in this SBb galaxy, finding a negative gradient with a slope consistent with the characteristic value for disk galaxies recently reported. The large number of H ii regions allow us to estimate the typical mixing scale-length (rmix ~0.4 re ), which sets strong constraints on the proposed mechanisms for metal mixing in disk galaxies, like radial movements associated with bars and spiral arms, when comparing with simulations. We found evidence for an azimuthal variation of the oxygen abundance, that may be related with the radial migration. These results illustrate the unique capabilities of MUSE for the study of the enrichment mechanisms in Local Universe galaxies.Comment: 13 pages, 7 Figurs, accepted for publishing in A&

    Microscopic NNNN(1440)NN\to NN^{\ast}(1440) transition potential: Determination of πNN(1440)\pi NN^{\ast}(1440) and σNN(1440)\sigma NN^{\ast}(1440) coupling constants

    Get PDF
    A NNNN(1440)NN\to NN^{\ast}(1440) transition potential, based on an effective quark-quark interaction and a constituent quark cluster model for baryons, is derived in the Born-Oppenheimer approach. The potential shows significant differences with respect to those obtained by a direct scaling of the nucleon-nucleon interaction. From its asymptotic behavior we extract the values of πNN(1440)\pi NN^{\ast}(1440) and σNN(1440)\sigma NN^{\ast}(1440) coupling constants in a particular coupling schemeComment: 15 eps figures, Accepted for publication in Phys. Rev.
    corecore