1,673 research outputs found

    Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models

    Get PDF
    Motivated by new sounding-rocket wide-field polarimetric images of the Large Magellanic Cloud, we have used a three-dimensional Monte Carlo radiation transfer code to investigate the escape of near-ultraviolet photons from young stellar associations embedded within a disk of dusty material (i.e. a galaxy). As photons propagate through the disk, they may be scattered or absorbed by dust. Scattered photons are polarized and tracked until they escape to be observed; absorbed photons heat the dust, which radiates isotropically in the far-infrared, where the galaxy is optically thin. The code produces four output images: near- UV and far-IR flux, and near-UV images in the linear Stokes parameters Q and U. From these images we construct simulated UV polarization maps of the LMC. We use these maps to place constraints on the star + dust geometry of the LMC and the optical properties of its dust grains. By tuning the model input parameters to produce maps that match the observed polarization maps, we derive information about the inclination of the LMC disk to the plane of the sky, and about the scattering phase function g. We compute a grid of models with i = 28 deg., 36 deg., and 45 deg., and g = 0.64, 0.70, 0.77, 0.83, and 0.90. The model which best reproduces the observed polarization maps has i = 36 +2/-5 degrees and g ~0.7. Because of the low signal-to-noise in the data, we cannot place firm constraints on the value of g. The highly inclined models do not match the observed centro-symmetric polarization patterns around bright OB associations, or the distribution of polarization values. Our models approximately reproduce the observed ultraviolet photopolarimetry of the western side of the LMC; however, the output images depend on many input parameters and are nonunique.Comment: Accepted to AJ. 20 pages, 7 figure

    Charge-transfer dynamics at the dye-semiconductor interface of photocathodes for solar energy applications

    Get PDF
    This article describes a comparison between the photophysical properties of two charge-transfer dyes adsorbed onto NiO via two different binding moieties. Transient spectroscopy measurements suggest that the structure of the anchoring group affects both the rate of charge recombination between the dye and NiO surface and the rate of dye regeneration by an iodide/triiodide redox couple. This is consistent with the performance of the dyes in p-type dye sensitised solar cells. A key finding was that the recombination rate differed in presence of the redox couple. This has important implications on the study of electron transfer at dye|semiconductor interfaces for solar energy applications

    Ni Mg mixed metal oxides for p-type dye-sensitized solar cells

    Get PDF
    Mg Ni mixed metal oxide photocathodes have been prepared by a mixed NiCl2/MgCl2 sol-gel process. The MgO/NiO electrodes have been extensively characterized using physical and electrochemical methods. Dye-sensitized solar cells have been prepared from these films and the higher concentrations of MgO improved the photovoltage of these devices, however, there was a notable drop in photocurrent with increasing Mg2+. Charge extraction and XPS experiments revealed that the cause of this was a positive shift in the energy of the valence band which decreased the driving force for electron transfer from the NiO film to the dye and therefore the photocurrent. In addition, increasing concentrations of MgO increases the volume of pores between 0.500 to 0.050 μm, while reducing pore volumes in the mesopore range (less than 0.050 μm) and lowering BET surface area from approximately 41 down to 30 m2 g-1. A MgO concentration of 5% was found to strike a balance between the increased photovoltage and decreased photocurrent, possessing a BET surface area of 35 m2 g-1 and a large pore volume in both the meso and macropore range, which lead to a higher overall power conversion efficiency than NiO alone

    Drained cavity expansion analysis with a unified state parameter model for clay and sand

    Get PDF
    This paper presents an analytical solution for drained expansion in both spherical and cylindrical cavities with a unified state parameter model for clay and sand (CASM). The solution developed here provides the stress and strain fields during the expansion of a cavity from an initial to an arbitrary final radius. Small strains are assumed for the elastic region and large strains are applied to soil in the plastic region by using logarithmic strain definitions. Since its development, the unified CASM model has been demonstrated by many researchers to be able to capture the overall soil behaviour for both clay and sand under both drained and undrained loading conditions. In this study, the CASM model is used to model soil behaviour whilst a drained cavity expansion solution is developed with the aid of an auxiliary variable. This is an extension of the undrained solution presented by the authors in 2017. The parametric study investigates the effects of various model constants including the stress-state coefficient and the spacing ratio on soil stress paths and cavity expansion curves. Both London clay and Ticino sand are modelled under various initial stress conditions and initial state parameters. The newly developed analytical solution highlights the potential applications in geotechnical practice (e.g., for the interpretation of cone penetration test data) and also provides useful benchmarks for numerical simulations of cavity expansion problems in critical state soils

    The Sloan Digital Sky Survey Reverberation Mapping Project: Rapid CIV Broad Absorption Line Variability

    Full text link
    We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4sigma) variability in the equivalent width of the broad (~4000 km/s wide) CIV trough on rest-frame timescales as short as 1.20 days (~29 hours), the shortest broad absorption line variability timescale yet reported. The equivalent width varied by ~10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n_e > 3.9 x 10^5 cm^-3. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.Comment: 15 pages, 14 figures. Accepted for publication in the Astrophysical Journa

    Observations on Hilltopping in Thick-Headed Flies (Diptera: Conopidae)

    Get PDF
    Direct observations of hilltopping behaviour in the thick-headed flies (Diptera: Conopidae) have only been mentioned once in the literature. Hilltop collecting, however, may be an effective way to survey these endparasitoids. The first evidence of hilltopping in species belonging to the subfamilies Myopinae and Dalmanniinae is presented and discussed. Field observations were conducted on Colle Vescovo, Italy and Mount Rigaud, Canada, and museum specimens were examined. Observations and records indicate that four species in the genera Dalmannia, Myopa, and Zodion are hilltoppers on Colle Vescovo, while three species in the genera Myopa and Physocephala are hilltoppers on three hilltops near Ottawa, Canada. Fifteen additional species of conopids have been collected on hilltops and could possibly utilize hilltops in some years as a part of their mating strategy. Detailed phenologies and observations of mating and perching behaviours are given for species in the genera Dalmannia, Myopa, Physocephala, and Zodion. The importance of hilltop habitat preservation is stressed

    Separated Kaon Electroproduction Cross Section and the Kaon Form Factor from 6 GeV JLab Data

    Full text link
    The 1H^{1}H(e,eK+e,e^\prime K^+)Λ\Lambda reaction was studied as a function of the Mandelstam variable t-t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Lab. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q2Q^2 of 1.00, 1.36 and 2.07 GeV2^2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen, Guidal, and Laget. The results establish the method, previously used successfully for pion analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Lab experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q2Q^2 between 5-10 GeV2^2, which makes data in the few GeV regime particularly interesting. The Q2Q^2 dependence at fixed xx and t-t of the longitudinal cross section we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty

    Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    Get PDF
    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
    corecore