10,147 research outputs found
Priorities in Mitigating Emissions from the Transportation Sector and in Adapting Transportation Facilities
A Relationship Between Regression Tests and Volatility Tests of Market ncy
Volatility tests are an alternative to regression tests for evaluating the joint null hypothesis of market efficiency and risk neutrality. Acomparison of the power of the two kinds of tests depends on what the alternative hypothesis is taken to be. By considering tests based on conditional volatility bounds, we show that if the alternative is that one could"beat the market" using a linear combination of known variables, then the regression tests are at least as powerful as the conditional volatility tests.If the application is to spot and forward markets, then the most powerful conditional volatility test turns out to be equivalent to the analogous regression test in terms of asymptotic power. In other applications,the volatility test will be less powerful than regression tests against our chosen alternative. However, these results are not inconsistent with the observation that volatility tests may be more powerful against other alternative hypoth-eses, such as that risk-averse investors are rationally maximizing the present discounted utility of future consumption,with a time-varying discount rate.
Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows
The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented
Genetic diversity of the rain tree (Albizia saman) in Colombian seasonally dry tropical forest for informing conservation and restoration interventions
Albizia saman is a multipurpose tree species of seasonally dry tropical forests (SDTFs) of Mesoamerica and northern South America typically cultivated in silvopastoral and other agroforestry systems around the world, a trend that is bound to increase in light of multimillion hectare commitments for forest and landscape restoration. The effective conservation and sustainable use of A. saman requires detailed knowledge of its genetic diversity across its native distribution range of which surprisingly little is known to date. We assessed the genetic diversity and structure of A.saman across twelve representative locations of SDTF in Colombia, and how they may have been shaped by past climatic changes and human influence. We found four different genetic groups which may be the result of differentiation due to isolation of populations in preglacial times. The current distribution and mixture of genetic groups across STDF fragments we observed might be the result of range expansion of SDTFs during the last glacial period followed by range contraction during the Holocene and human‐influenced movement of germplasm associated with cattle ranching. Despite the fragmented state of the presumed natural A. saman stands we sampled, we did not find any signs of inbreeding, suggesting that gene flow is not jeopardized in humanized landscapes. However, further research is needed to assess potential deleterious effects of fragmentation on progeny. Climate change is not expected to seriously threaten the in situ persistence of A. saman populations and might present opportunities for future range expansion. However, the sourcing of germplasm for tree planting activities needs to be aligned with the genetic affinity of reference populations across the distribution of Colombian SDTFs. We identify priority source populations for in situ conservation based on their high genetic diversity, lack or limited signs of admixture, and/or genetic uniqueness
Some integrals ocurring in a topology change problem
In a paper presented a few years ago, De Lorenci et al. showed, in the
context of canonical quantum cosmology, a model which allowed space topology
changes (Phys. Rev. D 56, 3329 (1997)). The purpose of this present work is to
go a step further in that model, by performing some calculations only estimated
there for several compact manifolds of constant negative curvature, such as the
Weeks and Thurston spaces and the icosahedral hyperbolic space (Best space).Comment: RevTeX article, 4 pages, 1 figur
Planning Opportunities Remain Under the Final Partnership Allocation Rules for Contributed Property
Multiblock High Order Large Eddy Simulation of Powered Fontan Hemodynamics: Towards Computational Surgery
Children born with only one functional ventricle must typically undergo a series of three surgeries to obtain the so-called Fontan circulation in which the blood coming from the body passively flows from the Vena Cavae (VCs) to the Pulmonary Arteries (PAs) through the Total Cavopulmonary Connection (TCPC). The circulation is inherently inefficient due to the lack of a subpulmonary ventricle. Survivors face the risk of circulatory sequelae and eventual failure for the duration of their lives. Current efforts are focused on improving the outcomes of Fontan palliation, either passively by optimizing the TCPC, or actively by using mechanical support. We are working on a chronic implant that would be placed at the junction of the TCPC, and would provide the necessary pressure augmentation to re-establish a circulation that recapitulates a normal two-ventricle circulation. This implant is based on the Von Karman viscous pump and consists of a vaned impeller that rotates inside the TCPC. To evaluate the performance of such a device, and to study the flow features induced by the presence of the pump, Computational Fluid Dynamics (CFD) is used. CFD has become an important tool to understand hemodynamics owing to the possibility of simulating quickly a large number of designs and flow conditions without any harm for patients. The transitional and unsteady nature of the flow can make accurate simulations challenging. We developed and in-house high order Large Eddy Simulation (LES) solver coupled to a recent Immersed Boundary Method (IBM) to handle complex geometries. Multiblock capability is added to the solver to allow for efficient simulations of complex patient specific geometries. Blood simulations are performed in a complex patient specific TCPC geometry. In this study, simulations without mechanical assist are performed, as well as after virtual implantation of the temporary and chronic implants being developed. Instantaneous flow structures, hepatic factor distribution, and statistical data are presented for all three cases
Partnership Workouts: Problems and Solutions Under Final Section 704(b) and 752 Regulations
- …
