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Abstract

Children born with only one functional ventricle must typically undergo a series of three surgeries 

to obtain the so-called Fontan circulation in which the blood coming from the body passively 

flows from the Vena Cavae (VCs) to the Pulmonary Arteries (PAs) through the Total 

Cavopulmonary Connection (TCPC). The circulation is inherently inefficient due to the lack of a 

subpulmonary ventricle. Survivors face the risk of circulatory sequelae and eventual failure for the 

duration of their lives. Current efforts are focused on improving the outcomes of Fontan palliation, 

either passively by optimizing the TCPC, or actively by using mechanical support. We are working 

on a chronic implant that would be placed at the junction of the TCPC, and would provide the 

necessary pressure augmentation to re-establish a circulation that recapitulates a normal two-

ventricle circulation. This implant is based on the Von Karman viscous pump and consists of a 

vaned impeller that rotates inside the TCPC. To evaluate the performance of such a device, and to 

study the flow features induced by the presence of the pump, Computational Fluid Dynamics 

(CFD) is used.

CFD has become an important tool to understand hemodynamics owing to the possibility of 

simulating quickly a large number of designs and flow conditions without any harm for patients. 

The transitional and unsteady nature of the flow can make accurate simulations challenging. We 

developed and in-house high order Large Eddy Simulation (LES) solver coupled to a recent 

Immersed Boundary Method (IBM) to handle complex geometries. Multiblock capability is added 

to the solver to allow for efficient simulations of complex patient specific geometries. Blood 

simulations are performed in a complex patient specific TCPC geometry. In this study, simulations 

without mechanical assist are performed, as well as after virtual implantation of the temporary and 

chronic implants being developed. Instantaneous flow structures, hepatic factor distribution, and 

statistical data are presented for all three cases.
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1. Introduction

Single ventricle heart disease is the leading cause of death from any birth defect in the first 

year of life ([8, 21]). The most common of these defects is hypoplastic left heart syndrome, 

in which the only functional ventricle is a morphologically right ventricle [15]. The current 

procedure to overcome this uni-ventricular condition is to by pass the right sided circulation 

and rely upon the single functional ventricle to supply the systemic and pulmonary 

circulations in series. This reparative process is known as staged Fontan palliation. The 

Fontan circulation is an inherently inefficient circulation due to the lack of a sub-pulmonary 

ventricle, and is associated with elevated systemic venous pressures and reduced ventricular 

filling [12]. Even though the existing staged palliative approach results in significant 

improvement in survival, it remains highly problematic with only 50 to 70% survival rate 

through completion of all three surgeries ([39, 6]). In addition there is a persistent risk of late 

Fontan failure which stems form the residual circulatory inefficiencies after completion of 

palliation [43]. These complications may be attributed to energy losses and irregular flow 

and mixing features in the TCPC.

Passive flow solutions focus on improving the configuration of the TCPC to reduce pressure 

losses and improve flow split between the two lungs. To prevent the two inflow jets from 

colliding, groups have proposed a model of TCPC with planar one-diameter offset between 

the superior and inferior vena cavae. This solution proved to reduce power losses by 

preventing inflow collision [33]. Another strategy is to split one or both vena cavae to 

prevent the flow from colliding, while maintaining a good flow split in order for the hepatic 

factor to be equally distributed between the two lungs [51, 30]. However, these 

modifications may be difficult to implement surgically with concern for thrombus formation 

and injury to adjacent anatomic structures: the pressure benefit is relatively small with 

respect to clinical improvement. Thus a clinical benefit of passive flow optimization has yet 

to be proven. Active flow control solutions focus on augmenting Fontan flow through the 

use of a mechanical device. The aim is to resolve the Fontan paradox (increase in the 

systemic venous pressure and a decrease in the pulmonary arterial pressure) by decreasing 

systemic venous pressure and increasing pulmonary arterial pressure ([10, 12, 42]) as occurs 

in normal circulatory physiology. We have shown that a pressure increase of as little as 2 to 

5 mmHg will reduce systemic venous pressure and increase pulmonary arterial pressure, and 

restore conditions closer to a normal two ventricle circulation [44]. Mechanical assist 

consisting of a single axial pump positioned in the inferior vena cava has been proposed 

[55], increasing the pressure before reaching the junction of the TCPC. But this represents a 

partial solution to the 4-way flow problem. We have proposed a pump solution based on the 

Von Karman viscous pump principle which involves spinning a double-sided cone at the 

center of the TCPC junction, featuring mild vane structure [45]. This solution addresses all 4 

flow components of the TCPC with a single pump.

Delorme et al. Page 2

Comput Fluids. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Placing a right sided power source in the uni-ventricular Fontan circulation would restore 

conditions closer to a normal two-ventricle circulation as potential to eradicate the 

conditions which lead to Fontan failure and allow medical management of affected patients 

as a “bi-ventricular Fontan”. Two versions of this pump are currently under development: a 

temporary implant and a chronic implant. In the case of the temporary implant, the VIP 

would be inserted via a catheter through a femoral vein or jugular vein, positioned at the 

TCPC junction and deployed by an expandable pump head configuration. The VIP will be 

powered by an external electromagnetic motor. Kerlo et al [25] show the hydraulic 

performances of the VIP over a range of flow rates and rotation rates. The VIP provides the 

desired pressure rise for the selected rotation rates, with a relatively flat profile over the 

range of flow rates. This predicts stable performance over a wide range of physiological 

conditions. The operating conditions for the pump are between 2000 RPM and 5000 RPM 

(up to 7000 RPM if needed).

In the case of the chronic implant, an impeller with contained motor is located at the center 

of a housing which has been optimized to improve pump performance. This device would be 

implanted permanently and would replace the existing TCPC junction. Figure 1 shows a 

schematic of the implantation of the chronic implant: starting from an existing TCPC 

configuration (Figure 1-a), the junction of the TCPC would be removed (Figure 1-b) and the 

vessels would be directly sutured into the inlets and outlets of the device (Figure 1-c). Figure 

2 shows an early stage prototype. For flow visualization purposes, the housing is transparent 

and the VIP can be seen at the center of the junction. The VIP is maintained in place by the 

two shafts, and the electric motor is located inside the pump itself. Thanks to the presence of 

its housing, the chronic implant is independent from the existing blood vessel configuration: 

the device can be implanted in patients for which the implantation of the temporary implant 

would have been problematic due to the geometry of the TCPC junction.

Computational Fluid Dynamics (CFD) is widely used to study pathological flows and 

medical devices. In 2001, Mittal et al [35] used Large Eddy Simulation (LES) to study 

pulsatile flow in a modeled arterial stenosis. They showed good qualitative agreement with 

experiments, with an accurate prediction of the transitional flow behind the stenosis, even 

with a laminar inflow condition. They emphasized the ability of LES to predict transitional 

and turbulent flows, as opposed to RANS based approaches. Similarly, Bazilevs et al 
proposed a variational multiscale residual-based turbulence model for LES [7] and showed 

accuracy of flow predictions for bilogical applications. In 2007, Varghese et al [56, 57] used 

DNS to study axi-symmetric flows under steady and pulsatile conditions. Under steady 

inflow conditions, they showed that the flow was laminar in the entire domain for an inlet 

Reynolds number Re = 500. But at Re = 1000, they showed that the flow transitioned to a 

turbulent flow, with a delayed transition downstream of the stenosis. This effect was even 

larger for the eccentric case. These studies showed the importance of a good turbulence 

model to capture the transitional and turbulent nature of blood flows due to the shape and 

curvatures of the vessels. CFD is also commonly used to study medical devices (axial and 

centrifugal pumps, mechanical heart valves…) [4, 53, 58, 52].

For years, people have been trying to better understand the flow physics induced by the 

TCPC geometries to reduce the pressure losses and improve the outcome of the Fontan 
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procedure. Early studies investigated the impact of geometric parameters such as curvature, 

diameter or offset on the efficiency of the geometry. Most studies were performed on 

idealized geometries with rigid walls. Recently, studies showed that patient specific 

geometries [46] with physiological boundary conditions [34] are necessary to obtain 

accurate flow predictions. Also recent studies emphasized the need for high order accurate 

numerical methods to predict small scale vortical structures responsible for part of the 

energy losses [26].

With the improvement of computational power, the concept of computational surgery has 

become more and more popular over the past several years. The idea is to use CAD and CFD 

software to simulate the effects of different blood vessel configurations, or different 

implantation of medical device before performing the actual surgery [29, 13, 1, 31, 32]. In 

this paper, the performance of our novel temporary and chronic implants are studied using a 

novel multiblock Large Eddy Simulation solver coupled with an Immersed Boundary 

Method. The simulations are performed in a patient specific geometry. The temporary 

implant is placed at the junction of the TCPC, while a computational surgery is performed to 

implant the chronic device with the guidance of surgeons. Instantaneous flow features, as 

well as pressure rise, mean wall shear stresses and hemolysis index are studied to 

characterize the powered Fontan hemodynamics in a patient specific geometry.

2. Methods

2.1. Governing Equations

To study the flow physics induced by the Fontan circulation, a high order Large Eddy 

Simulation code has been developed based on a dimensionless incompressible formulation 

of the Navier-Stokes equations, as presented below:

(1)

(2)

where ũi is the ith component of the spatially filtered velocity vector, p̃ is the spatially 

filtered pressure, xi is the ith component of the spatial domain and τij is the sub-grid stress 

tensor which arises from the filtering of the equations. In Large Eddy Simulation, the flow 

scales are separated through filtering operations, from which arise the sub-grid scale tensor 

τij. The classical eddy viscosity model yields [41]:

(3)

with
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(4)

The eddy viscosity νT is specified in terms of gradients of the filtered velocity field 

according to the Vreman model [49]. This model is easy to implement, efficient to use, and 

applicable to fully inhomogeneous turbulent flows[3, 13, 14, 49]. This model gives:

(5)

(6)

with

(7)

and

(8)

A value of 0.07 was proposed by Vreman for the constant C and has been used in this study.

2.2. Numerical Methods

The equations are integrated in time using a third order accurate Backward Difference 

Formula (BDF) method [50]. The convective terms are integrated using a fifth order accurate 

Weighted Essentially Non Oscillatory (WENO) scheme [59]. The diffusion terms and the 

sub-grid stress tensor arising from the filtering of the equations are computed using fourth 

order accurate centered difference schemes. The implementation of the methods were tested 

and validated in our previous studies[3, 13, 14].

2.3. Multiblock Immersed Boundary Method and Computational Surgery

2.3.1. Immersed Boundary Method—The use of high order numerical methods is 

simplified by the use of a Cartesian grid. But to efficiently simulate flows over or through 

non-Cartesian geometries a mirroring immersed boundary method (IBM) is used [28]. Using 
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this approach, it is possible to simulate complex geometries such as complex blood vessel 

configurations on a simple Cartesian grid.

2.3.2. Multiblock Approach Towards Computational Surgery—Multi-block 

approaches have been more and more popular, especially since the increase in available 

computational resources. Applications of multi-block CFD are also very wide [38, 11, 37, 

36, 54, 16, 47, 27].

In our approach the multi-domain decomposition is performed using message passing 

interface (MPI). Each processor is assigned particular section of the computational domain. 

To ensure continuity of the solution across the processors, overlapping is used, as seen on 

figure 3. Figure 3-a shows a computational domain partitioned using four processors (red, 

black, blue and green). Each processor only solve the Navier-Stokes equations on their 

particular domain. Figure 3-b shows the overlapping between each processor. In this 

example, two layers of grid points are shared between the processors: at each time step, 

before computing the spatial derivatives, the processors communicate the shared data to their 

neighbors. By doing so, we make sure the the values of these derivatives are going to be 

identical at the interface between the processors. The needed number of shared grid points 

depends on the numerical schemes the solver uses. In our case, three layers of grid points 

were used.

2.3.3. Poisson Solver—The Poisson equation now has to be solved in parallel, each 

processor solving the problem on their part of the computational domain. To do so, the 

Hypre library is used ([17],[18],[19]). A preconditioned conjugate gradient (PCG) method is 

used with geometric multigrid as preconditioner for solving the discretized Poisson equation 

as described in Ashby et al [5].

2.3.4. Automation of the Process—When using a limited number of processors, the 

decomposition of the domain can be performed manually. But this task becomes very 

tedious when considering a large number of processors. Indeed, for each processor, the sub-

domain has to be defined, as well as the connectivity between each block (each block has to 

know the identity of its neighbors to know with which processor to communicate). To easily 

setup a complex geometry with large number of blocks, a pre-processing code was written. 

This code iterates to find the optimal configuration of the blocks to limit the number of grid 

points wasted. The algorithm is summarized in figure 4. The user inputs the number of 

minimum number of processors desired for the simulation, as well as a surface mesh of the 

geometry of interest. The code then computes the dimensions of the global bounding box 

necessary to fit the geometry, as well as the levelset function φ inside this box (positive 

values inside the fluid region, negative values inside the solid region). To keep the load 

between processors as balanced as possible, it is theorized that the number of processors in 

each direction should be proportional to the size of the domain in each direction. Starting 

with N = 1 for the smaller size direction, the number of processors in the other directions is 

computed using the ratio of the length of the bounding box. Once the number of blocks in 

each direction is known, each block containing at least one grid point for which ϕ is greater 

or equal to 0 is flagged. After this operation, the number of flagged block is computed and if 

this number is less than the desired number, the number of blocks in the smallest direction is 
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increased. The process is repeated until the number of flagged blocks is equal or greater than 

the desired number of blocks. The code then generates the connectivity between the 

processors, to allow for the communication during the LES simulation.

2.3.5. Scaling and Efficiency of the Solver—Figure 5-a shows the scaling of the 

multi-block solver. As the number of grid points increases (black and blue), the code scales 

linearly up to 512 processors.

To assess the efficiency (ratio between the number of fluid grid points and the total number 

of grid points) of the multiblock decomposition, two geometries are considered. The first 

one is an idealized TCPC used to study powered Fontan hemodynamics in [13] (figure 6-a). 

The second one was obtained from the Open Source Medical Software Corporation [40] and 

corresponds to a three year old male patient (figure 6-b). Figure 5-b shows the efficiency for 

these two cases. For the idealized TCPC, the geometry is very simple and symmetric, which 

makes the improvement of the computational efficiency easier. On a single block domain, 

and in the absence of grid stretching, the efficiency is close to 20%. Very quickly, as the 

number of blocks increases, the efficiency increases and with less than 40 blocks, it reaches 

70%. For the patient specific geometry, it is more difficult to obtain a high grid efficiency 

due to the high number of small vessels. With the single block approach, the grid efficiency 

is close to 8%. As the number of blocks increases, the efficiency increases too, and is close 

to 40% for about 1400 blocks.

The same comments can be made when looking at the the ratio of the computational domain 

volume for the multi-block approach with the volume of the computational domain for the 

single block approach. When the number of blocks is low, the behavior of the multi-block 

approach is similar for both geometries. As the number of blocks increases, a plateau is 

reached for the idealized TCPC around 700 blocks. This shows that the blocks are following 

closely the geometry, and that more blocks are not going to improve the efficiency of the 

solver. For the patient specific geometry, a similar plateau is observed after around 1300 

blocks.

2.3.6. Overall procedure—In the rest of this study, the following procedure for the setup 

of a simulation is applied. The blood vessels configurations are obtained from MRI data [40] 

and are imported into a CAD software (here DS Solidworks), as shown on figure 7-a. If 

needed the geometry is modified and then exported to be then used by a meshing software 

(in this case Gambit). A surface mesh of the geometry is then generated (Figure 7-b). This 

surface is then used by the pre-processing software to generate an optimal configuration of 

the computational domain based on the desired number of blocks (Figure 7-c). This overall 

procedure is very fast as it does not involve a complex mesh generation.

2.4. Particle Laden Flows for Hemolysis Estimation

Particle modeling has become more and more popular in the past decade. In 2008, Guha [22] 

reviewed most of the current methods used to model particle transport and particle 

deposition. Most of the models assumed a dilute mixture, in which the volume fraction of 

the dispersed phase is low. With this assumption, the particles are not interacting with each 

other and they exhibit a one way coupling (the motion of the particles depends on the fluid 
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flow field). Most of the previously cited papers assumed that the density ratio between the 

particles and the surrounding fluid is large enough (O(100)) to neglect any other forces that 

could drive their movements. In the case of blood flow, the density ration is much closer to 

unity. Because of this, four forces need to be taken into account: the aerodynamic drag, the 

gravity, the pressure drag and the Basset force drag [2]. The aerodynamic drag ca be written 

as

(9)

where Vf is the velocity of the fluid at the article location, Vp is the velocity of the particle 

and τr is the particle relaxation time. It is a measure of inertia and denotes the time scale 

with which any slip velocity between the particle and the fluid is equilibrated. In the case of 

a spherical particle, we have:

(10)

where ρp is the density of the particle, r is the radius of the particle and μ is the viscosity of 

the fluid. Another much used equation is shown here:

(11)

It relates the drag coefficient on the particle as a function of the Reynolds number relative to 

the particle. If the particles are non-spherical, the aerodynamic drag is usually expressed as 

an empirical correlation to the drag of equivalent spheres by introducing suitable shape 

factors. The gravitational forces are a function of the relative difference between the density 

of the particle and the density of the fluid flow. It can be expressed as:

(12)

The pressure drag is due to the pressure gradient of the undisturbed flow, as well as the 

viscous stresses. It can be expressed as:

(13)

The Basset drag force describes the force due to the lagging boundary layer development 

with changing relative velocity of bodies moving through a fluid. The Basset term accounts 
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for viscous effects and addresses the temporal delay in boundary layer development as the 

relative velocity changes in time. It can be expressed as:

(14)

where dp is the dimensionless diameter of the particle and t is the current time. The 

equations of motion is then:

(15)

and

(16)

2.4.1. Time Integration—Following the approach of Armenio et al [2], in dimensionless 

form:

(17)

and

(18)

The pressure drag is computing by interpolating the pressure gradients and viscous terms 

from the Eulerian computational grid to the Lagrangian location of each particle. The 

computation of the Basset drag force is more complicated. Indeed, using a regular 

quadrature rule to compute the time integral is not possible as the integral is not defined at τ 
= t. Applying a single quadrature rule:

(19)

where N is the number of time interval used to compute the integral. Assuming that the 

function f is relatively constant of the interval [(k − 1) Δt; kΔt], we can write:
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(20)

We finally obtain:

(21)

Equations 15 and 16 are then integrated using a first order accurate Euler scheme with 

multiple sub-steps. This is done to make sure that the particle does not cross too many cells 

between two consecutive time steps.

2.4.2. Bouncing Boundary Condition at the Surface of the Immersed Body—In 

a case of collision of a particle with the immersed body, a perfectly elastic collision is 

assumed with the tangential component of the velocity before and after the collision constant 

and the normal component of the velocity that changes sign between before and after the 

contact.

2.4.3. Hemolysis Estimation—Damage to the red blood cell with resulting release of 

hemoglobin into the blood plasma is known as hemolysis. The trauma endured by a red 

blood cell can manifest several ways: morphological changes, shortened life span or even 

rupture. When the latter occurs, the red blood cells release hemoglobin into the blood 

stream. Hemolysis is mostly linked to the exposure of red blood cells to shear stresses, but 

also to the exposure time to these high stresses. When using Lagrangian particle tracking to 

estimate hemolysis, the stress history is integrated along a flow path line. These path lines 

can be artificially defined as a post processing once the simulation is over. But they can also 

but modeled using particles that follow flow pathlines between the inlet(s) and the outlet(s). 

All models assume that, even though the shear stress varies throughout a medical device, 

over a short enough time the shear stress can be considered uniform and therefore hemolysis 

for this time interval can be calculated using equation 22:

(22)

where C, α and β are obtained empirically to match experimental measurements. t is the 

exposure time and τ is a measure of the stress applied to the red blood cell. The hemolysis 

for each interval can then be integrated along each path line and the average of each 

hemolysis index at the outlet(s) can be computed. A common model to compute this integral 

is shown below [48, 23]:
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(23)

In equations 22 and 23, τ represents a measure of the shear stress experienced at a particular 

time by a red blood cell. The generally accepted expression for τ is an expression based on 

the Von Mises criteria, as shown below:

(24)

The definition of σij is where research groups do not necessarily agree. In most recent 

studies, research groups used RANS-based solver to study medical devices, and they argued 

the need to take both shear stresses and Reynolds stresses to take into account turbulent 

fluctuations of the velocity field as an extra source of stress for the red blood cells [9]. In this 

case, we obtain:

(25)

The idea here is that the mean flow field is not enough to estimate the stresses that red blood 

cells experience. Therefore, turbulence statistics should be taken into account when 

estimating the hemolysis index. In a recent paper, Ge et al [20] argued that Reynolds stresses 

should not be taken into account when computing blood damage. Indeed, viscous stresses 

are a real measure of the strength of the forces exerted by the flow on the blood cells. But 

Reynolds stresses are a statistical quantity that has no direct link to any physical forces. 

Taking into account Reynolds stresses poses another problem: the magnitude of Reynolds 

stresses are usually several order of magnitude higher than the magnitude of viscous 

stresses. In the present study, only the viscous forces were taken into account to estimate the 

hemolysis induced by the presence of the rotating device.

3. Results

3.1. Validation

To validate the implementation of the multiblock solver, the powered Fontan hemodynamics 

case at 2000 RPM from Delorme et al. [13] in an idealized TCPC is used. This case was 

previously simulated using a single block version of the solver, resulting in poor agreement 

when compared to SPIV measurements. The idealized TCPC consists in two inlet pipes of 

22 mm corresponding to the SVC and IVC and two outlet pipes of 18 mm corresponding to 

the LPA and RPA. At each inlet, a flow rate of 2.2 L.min−1 is imposed, the density is 1060 

kg.m −3 and the viscosity is 3.5 cP. This results in a Reynolds number of 700. In the present 

study, the simulation was performed on a domain composed of 57 blocks as seen on Figure 

6-a, using a 60×60×60 grid within each block resulting in about 12.3 million grid points. 
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The statistics were averaged over 20 flow through times and the results are shown on figure 

8.

The results in red show clearly better agreement when compared to the experimental 

measurements. Near the location of the rotating impeller, the re-circulation of the flow is 

well captured by the solver (Figure 8-a), as well as the rate at which the flow re-develops 

towards a typical turbulent channel flow profile as we move downstream in the PA. Similar 

comments can be made when looking at figures 8-b and c. The multiblock configuration 

allowed us to simulate this problem using more grid points, and more efficiently as most of 

these grid points were located inside the fluid region of interest.

3.2. Cases

3.2.1. Computational Surgery—The validated solver is now used to study the effect of 

the prototype on the physiology of an existing patient. The patient specific geometry was 

obtained from the Open Source Medical Software Corporation’s website [40] and 

corresponds to a 17 year old female patient as seen on figure 9-a. The geometry contains 2 

inlets (IVC and SVC) and 26 outlets corresponding to the different pulmonary branches. 

This geometry was chosen because of the adult size of the vessels, matching the size of the 

currently designed prototype. Using the help of surgeons, the computational surgery was 

performed as seen on figure 9. First, the location of the geometry that needs to be removed 

was chosen (Figure 9-b), and the junction of the TCPC was separated from the other vessels 

(Figure 9-c). The chronic implant was then put in place (Figure 9-d). Because the diameters 

of the blood vessels were not exactly matching the inlet and outlet diameters of the device, 

the ends of the blood vessels were slightly modified using CAD software. Finally the vessels 

were sutured on the chronic implant as seen on figure 9-e.

Figure 10 shows a summary of the three cases that are studied here. First, the original patient 

specific configuration (Figures 10-a and b) will be studied to estimate the energy losses due 

to the Fontan circulation and will serve as a baseline case to estimate the improvements due 

to the presence of the rotating impeller. Then the temporary implant configuration will be 

studied (Figures 10-c and d): in this configuration, the VIP is placed at the junction of the 

existing TCPC. In this particular case, the VIP was placed and centered as much as possible 

to maximize its distance with the blood vessels, thus reducing as much as possible the 

resulting wall shear stresses. Finally the chronic implant configuration (Figures 10-e and f) 

will be studied to estimate the improvement due to the presence of the housing replacing the 

original TCPC junction.

3.2.2. Multiblock Configuration—All the simulations were run with a multiblock 

configurations as shown on Figure 11. Figure 11-a shows the setup for the un-powered case, 

as well as the temporary implant case. The simulations were run with 197 blocks, each 

blocks containing 50 × 50 × 50 grid points, resulting in 24.625 million points. Figure 11-b 

shows the setup for the chronic implant case. The simulations were run on 177 blocks, each 

blocks containing a 50 × 50 × 50 grid resulting in 22.125 million grid points. The grid 

resolution was chosen based on a convergence study performed for the un-powered case on 
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three different grids (403, 503 and 603 points per block): convergence was achieved for the 

time averaged data for the 503 grid.

3.2.3. Boundary conditions—At each inlet, the velocity profile was imposed as a 

Dirichlet boundary condition. Flow information were obtained from MRI data [40]. At the 

SVC, a time average flow rate of 1.11622 L · min−1 was imposed, while a time averaged 

flow rate of 1.82512 L · min−1 was imposed at the IVC, resulting in a 32% / 68% flow split. 

The resulting velocity profiles at each inlet are shown on figure 12. Four time points along 

the signal are highlighted: these points correspond to the peak velocity (t1), the maximum 

deceleration point (t2), the minimum velocity (t3) and the maximum acceleration point (t4). 

These points are going to be used in Section 3.4 to describe the hemodynamics induced by 

the different configurations. To compute the averaged quantities such as the mean wall shear 

stress, the data were averaged over 25 cardiac cycles. At the outlets, a homogeneous 

Neumann boundary condition is imposed for all three velocity components.

At each inlet a homogeneous Neumann boundary condition was imposed for the pressure. 

At each outlet, a constant Dirichlet pressure boundary condition was imposed. Clinical data 

[40] show that the pressure at each PA is 17 mmHg. Thus an equal constant pressure was 

imposed at all the pulmonary outlets. Clinical data show a pressure drop of about 1 mmHg 

between inlets and outlets. These data will be used to validate the energy losses predicted by 

the multiblock solver in Section 3.3.

3.3. Pump Efficiency

Figure 13 shows the time averaged pressure rise between the vena cavae and the pulmonary 

arteries. It is defined as:

(26)

We observe pressure drops of 1.5 mmHg across the TCPC due to energy losses in the TCPC 

junction, which is consistent with available clinical data [40].

In the presence of the temporary implant rotating at 3000RPM, a pressure rise of about 1.7 

mmHg can be observed. This pressure rise is lower than the pressure rise measured in an 

idealized TCPC at the same rotation rate (about 3mmHg) [13]. This indicates a sensitivity of 

the performance of the pump on the configuration of the blood vessels, that further motivates 

the use of a housing around the impeller to limit the effect of the vessel configuration on the 

performance of the device. The presence of the housing clearly improves the performance of 

the VIP, as seen on Figure 13. At 1000RPM, the pressure rise is close to 0.75 mmHg, but at 

3000 RPM we reach a value of 2.6 mmHg. This latest value is close to the value in the 

idealized TCPC configuration, showing that it is possible to improve the performance of the 

impeller thanks to the housing, no matter what the initial blood vessel configuration is.
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3.4. Instantaneous Flow Structures

The hemodynamics induced by the configuration of the vessels, with and without 

mechanical support is complex. To characterize the flow, instantaneous snapshots at the four 

time points highlighted in Section 3.2.3 will be shown. At every time point, isosurfaces of 

λ2 colored by vorticity magnitude will be shown, as well as three dimensional streamtraces 

colored by velocity magnitude. The λ2 criterion allows the identification of vortices in a 

complex 3D flow [24], while the streamtraces allow for a better visualization of the 

instantaneous motion of the flow. Figures 14 and 15 show instantaneous flow features in the 

case of no mechanical support. Figures 14-a and b show complex vortical structures at the 

peak of the inflow velocity with three main vortex tubes, resulting in helical flows at the 

TCPC junction, as well as in the pulmonary arteries. This complex turbulent flow, induced 

by the collision of the two incoming jets, results in energy dissipation that explains the drop 

of pressure across the TCPC. As the inflow is slowing down (Figures 14-c and d), the fluid 

inside the domain has more freedom to move inside the blood vessels, resulting in a 

breakdown of the vortex tubes into smaller vortical structures, generating more re-circulation 

inside the TCPC junction. It can also be observed that some re-circulation due to the 

curvature of the SVC is happening. As the flow reaches its minimum velocity (Figures 15-a 

and b), the turbulence level drops drastically resulting in less vortical structures, and low 

speed re-circulating flow. Many re-circulation regions are now seen inside the SVC as well 

as the TCPC junction and pulmonary arteries. This regions corresponds to regions where the 

curvature of the vessels is large. When the flow is re-accelerating (Figures 15-c and d), this 

re-circulating structures are being convected downstream inside the pulmonary arteries, and 

are being replaced by long vortex tubes, resulting in helical flow at the junction of the 

TCPC.

Figures 16 and 17 show instantaneous flow features for the temporary implant case at the 

same four time points. Figures 16-a and b show the instantaneous vortical structures at the 

peak velocity. Compared to the no support case, it can be seen that the flow in the TCPC 

junction is more complex due to the presence of the rotating impeller. Finer vortical 

structures can be observed, and are being shed by the tips of the six vanes of the impeller. 

This flow structures are then being convected by the mean flow inside the pulmonary 

arteries. When looking at the streamtraces, some pre-rotation of the flow can be observed 

near the pump in the VCs. In the PAs, a helical flow can be seen. As the flow is decelerating 

(Figures 16-c and d), this time the flow is not as free to develop due to the rotation of the 

pump that is maintained constant. The pump keeps shedding complex vortical structures, but 

this time this structures are not convected as fast as earlier, and have more time to dissipate 

before leaving the computational domain. Near the pump, because of the lower ”axial” 

velocity component, the flow becomes highly rotating and helical. The flow upstream from 

the pump stays similar, and is drive more by the motion of the VIP than the inflow condition. 

As the flow keeps decelerating to reach its minimum velocity (Figures 15-a and b), the flow 

structures generated by the VIP are almost static and do not propagates downstream of the 

pump. This results in a highly chaotic flow near the pump, that is now totally driving the 

dynamic of the flow. Similarly to the un-powered case, re-circulating regions can be seen in 

some of the high curvature parts of the VCs. Finally, as the flow re-accelerates (Figures 17-c 

and d), the vortical structures shed by the vanes of the impeller and being once again pushed 
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inside the pulmonary arteries, resulting in less re-circulation and chaos in the vicinity of the 

VIP. A more regular helical flow can be observed at the entrance of the pulmonary arteries.

In the case of the chronic implant, the flow structures are similar and thus are not shown 

here. The main difference resides in the magnitude of the vortex strengths and turbulence 

levels, consistent with the better pressure recovery measured in Section 3.3.

3.5. Mean Wall Shear Stress

Another important parameter when evaluating the performance of the pump is the shear 

stress at the blood vessel walls. Indeed it is necessary to ensure that the impeller will not 

damage the vessels, which could lead to rupture. Figure 18 shows the time averaged wall 

shear stresses for all three cases. Figure 18-a shows the wall shear stresses for the un-

powered case. It can be seen that the stresses are low (below 5 Pa), with close to 0 values in 

regions of high re-circulation, mostly around the TCPC junction and in the VCs where the 

curvature of the vessels is large. Figure 18-b shows the wall shear stresses when the VIP is 

rotating at 3000 RPM inside the existing blood vessel configuration. It can be seen now that 

the peak is 15 Pa, at the vessel wall close to the tips of the VIP fins. This peak value is below 

typically accepted value, and is very localized. When the chronic implant is in place and 

rotating at 3000 RPM (Figure 18-c), the peak wall shear stress drops to 13 Pa, and is still 

localized near the rotating impeller. These results show a double advantage of the chronic 

implant over the temporary one. First, the maximum wall shear stresses are lower in the case 

of the chronic device, which is due to the fact that the minimum distance between the 

impeller and the wall is optimized and always constant. In the case of the temporary implant, 

the impeller had to be placed as well as possible inside the existing configuration, which 

may result in the impeller being very close to the blood vessel walls, thus increasing the 

local stresses. Second, the locations of the high wall shear stresses in the case of the chronic 

implant are where the housing is sitting, meaning that the wall stresses are not damaging any 

blood vessels.

3.6. Hemolysis Estimation

Hemolysis is another important parameter when evaluating the performance of a pump in 

blood flow. Indeed, too high damage would result in lower red blood cell concentration, as 

well as potential thrombosis and blood clotting. To estimate the hemolysis for all cases, we 

used the particle tracking method mentioned in Section 2.4.3. Particles were seeded at each 

inlet such that 10000 new particles would enter the domain during each cardiac cycle, and 

data were gathered over 15 cardiac cycles. The particles were assumed to have similar 

properties as red blood cells, with a diameter of 7μm and a density of 1150 kg · m−3. Once a 

particle crosses the outlet plane, the value of hemolysis index is saved and the statistics are 

then processed after the simulation. The particles are also used to estimate the hepatic factor 

distribution. The hepatic factor is a substance released in a blood stream by the liver, and is 

necessary to prevent the development of arteriovenous malformations in the lungs. It is then 

important that the flow coming from the IVC is split almost equatlly between the two lungs. 

For this particular blood vessel configuration, the offset between the two VCs is almost 

negligible, resulting in a good mixing of the two inlet streams at the junction of the TCPC, 

thus allowing a good split of the IVC flow between the two PAs. For the un-powered 
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simulation, the IVC flow split between LPA and RPA was close to 57% / 43%. When the 

temporary impeller is in place, because of the position of the VIP that maintains a good 

symmetry of the TCPC junction, the IVC flow split is maintained and statistical results 

showed a flow split of 58% / 42%. When the chronic implant is in place at the TCPC 

junction, the geometry of the junction is now fully controlled and symmetrical, resulting in 

an improvement of the hepatic factor distribution with a flow split of 52% / 48%.

Figure 19 shows the statistical data for the hemolysis index of the particles leaving the 

computational domain. This figure shows the probability of a particle to have a value of 

hemolysis index within a particular range when leaving the computational domain through 

one of the 26 outlets. Before surgery, it can be seen that most of the particles (60 %) have a 

value of less or equal to 5 × 10−5, about 20 % have a value between 5 × 10−5 and 1.5 × 10−4 

and the rest have a value above 1.5 × 10−4. These remaining particles are particles that got 

trapped in boundary layer regions in which they were exposed to shear stresses for a longer 

time. When the chronic implant is present and rotating at 1000 RPM, it can be seen that once 

again the hemolysis is low. The main difference between this case and the case without the 

presence of the VIP is that the probability of finding particles with hemolysis index higher 

than 2.5 × 10−4 is higher. When the impeller is spinning at 3000 RPM, the probability to find 

particles with a value lower than 5 × 10−5 decreases (below 35 %) and the hemolysis index 

increases in average for all particles. It can be observed that the difference between the 

temporary and chronic implants is very small when looking at potential blood damage. 

Overall the values of hemolysis index are below accepted values for blood damage.

4. Conclusion

In this study, two solutions to improve the physiology of the Fontan circulation are 

presented. These two solutions are being developed in our research group and consist in 

implanting a rotating impeller inside the junction of the TCPC to increase the overall 

pressure recovery between vena cavae and pulmonary arteries. In the case of temporary 

implant, the impeller would be inserted via a catheter and would be used temporarily as a 

bridge-to-recovery or bridge-to-transplant. The second option consists of implanting a 

chronic housing containing the impeller in place of the existing TCPC junction. The housing 

would allow the pump to stay inside the patient indefinitely (even if it fails to rotate and 

reverts to serve as a static flow diverter), and allows for optimization of the performance of 

the pump by controlling the shape of the TCPC junction. To study the hemodynamics 

induced by this device, a Large Eddy Simulation solver was developed and coupled with a 

Multiblock Immersed Boundary Method to handle efficiently complex geometry on a simple 

Cartesian mesh. The solver is also coupled with particle tracking, allowing the user to 

simulate blood cells, thus estimating the hemolysis resulting from the mechanical support. 

Three cases were considered: the original patient specific geometry served as a baseline to 

estimate later the performance of the VIP. Then the temporary implant configuration was 

studied. The implantation of the chronic implant was performed via a Computational 

Surgery with the help of pediatric cardiac surgeons. Once the position of the chronic device 

was approved by the surgeons, evaluation of the performance was performed using the 

developed solver. Results showed very complex flows at different phases of the velocity 

inflow. Mean pressure rise showed that, at an identical RPM, the chronic implant performed 
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better, showing results similar to the ones obtained in an idealized TCPC [13], showing that 

the impact of the patient specific geometries can be limited by the presence of the housing. 

Mean wall shear stresses showed that the stresses were lower in the case of the chronic 

implant due to the optimized position of the VIP, which could not be achieved when using 

the existing blood vessel configuration. In all cases, the stresses were lower than generally 

accepted values for vessel damage. Finally, hemolysis estimation showed low values of 

hemolysis index for all cases, with similar values measured for the temporary and chronic 

implants.
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Highlights

• First computational surgical implantation of a novel pump for Fontan 

circulation

• Multiblock approach improves accuracy / efficiency of IBM for internal flows

• IBM on fixed Cartesian grid allows simulations of flows in complex moving 

geometry

• LES model allows accurate prediction of pathological low Re transitional 

flows

• Pump provides desired pressure rise while keeping blood damage low
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Figure 1. 
Three steps of the procedure. (a) Extracardiac conduit Fontan. (b) Cardiopulmonary bypass. 

(c) Pump implantation
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Figure 2. 
Prototype under development. The transparent housing can be seen, as well as the VIP with 

the motor inside.
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Figure 3. 
Schematic of the domain decomposition.
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Figure 4. 
Schematic of the iterative process to automatically setup the domain decomposition.
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Figure 5. 
Overall computational efficiency of the solver.
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Figure 6. 
Examples of domain decomposition for an idealized and a patient specific geometry.
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Figure 7. 
Three steps of the overall set up of a simulation. First we start with a CAD model that is 

obtained from MRI deta (a). Then a surface mesh is generated (b) and is used to set up the 

overall computational domain (c).
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Figure 8. 
Comparisons of the predicted velocity components in the outlet pipe of the TCPC with 

experimental measurements. Black lines show the results obtained with the single block 

configuration ([13]), red dashed lines show the results obtained with the current multiblock 

approach, dots show the experimental measurements.
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Figure 9. 
Computational surgery to virtually implant the chronic device inside an existing patient 

specific configuration. From the original blood vessels (a), the section to be removed was 

defined (b) and the TCPC junction was cut (c). The chronic implant is then put in place and 

the vessels’ ends are modified to match the size of the implant (d). Finally the blood vessels 

are sutured back to the implant.
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Figure 10. 
Three cases studies here. The original patient specific configuration is used as a baseline 

case to study the effect of the implant on the Fontan circulation ((a) and (b)). The effect of 

the temporary implant is studied to compare the performance with the chronic device ((c) 

and (d)). Finally the improvements of the performance due to the housing of the chronic 

implant are studied ((e) and (f)).
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Figure 11. 
Domain decomposition for all simulations presented in this study. Each block is colored 

differently to facilitate the visualization of the computational domain.

Delorme et al. Page 32

Comput Fluids. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Inflow velocity profiles at the IVC and SVC. The time points highlight the locations used in 

Section 3.4 to characterize the flow.
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Figure 13. 
Pressure rise between the VCs and the PAs
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Figure 14. 
Instantaneous flow features: Unpowered case (1/2).
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Figure 15. 
Instantaneous flow features: Unpowered case (2/2).
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Figure 16. 
Instantaneous flow features: Temporary implant case at 3000 RPM(1/2).
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Figure 17. 
Instantaneous flow features: Temporary implant case at 3000 RPM (2/2).
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Figure 18. 
Mean wall shear stress.
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Figure 19. 
Probability distribution of hemolysis index.
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