7 research outputs found

    Hawaiian imprint on dissolved Nd and Ra isotopes and rare earth elements in the central North Pacific: Local survey and seasonal variability

    No full text
    Dissolved neodymium isotopes (143Nd/144Nd, expressed as ΔNd) and rare earth elements (REEs) have the potential to trace the provenance of lithogenic material as well as water masses. The central North Pacific is poorly investigated with respect to its Nd isotope signature and REE cycling, and little is known about the contributions of volcanic islands, such as Hawaii, relative to dust input from Asian deserts to the surface water REE budgets. Here we present dissolved Nd isotope and REE data along with long-lived radium isotope activities from Hawaii Ocean Time-Series Station ALOHA and coastal waters from Oahu, sampled for a GEOTRACES process study in February 2011. The data are supplemented with seasonal samples from ALOHA. Our results show a clear influence of the Hawaiian Islands on the coastal ocean and surface waters at ALOHA during February, expressed by higher surface water Ra activities, radiogenic surface ΔNd (ΔNd = +1.4 to −1.0), and elevated Eu anomalies (Eu/Eu∗ â©Ÿ 1.3). Seasonal cycles of Asian dust deposition most likely contribute to the seasonal ΔNd variability of surface waters at ALOHA, as suggested by more negative ΔNd and the lack of Eu anomalies in summer. Neodymium isotopes in the intermediate and deep water column at ALOHA trace typical North Pacific water masses, such as North Pacific Intermediate Water and North Pacific Deep Water. We suggest that a radiogenic ΔNd excursion in 1000–2000 m water depth, observed in various North Pacific profiles, is controlled by advection of a modified Upper Circumpolar Deep Water or North Equatorial Pacific Intermediate Water. We further present an updated average ΔNd signature of −3.5 ± 0.5 for North Pacific Deep Water and show that REE patterns of deep waters at ALOHA are dominantly controlled by vertical processes

    Rare earth element behavior during groundwater–seawater mixing along the Kona Coast of Hawaii

    No full text

    The GEOTRACES Intermediate Data Product 2017

    No full text
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. GonzĂĄlez
    corecore