22 research outputs found

    Tight Junction Proteins and the Biology of Hepatobiliary Disease.

    No full text
    Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)-a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.journal articlereview2020 Jan 282020 01 28importe

    Ionizing radiation biomarkers for potential use in epidemiological studies

    Get PDF
    International audienceIonizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100mSv and/or 0.1mSvmin-1) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential. © 2012 Elsevier B.V
    corecore