201 research outputs found

    Some Like It Hot, Some Like It Warm: Phenotyping To Explore Thermotolerance Diversity

    Get PDF
    Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This ‘thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: (1) the heat stress regime used, (2) the developmental stage of the plants being studied, and (3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance

    Puzzles in BB physics

    Get PDF
    I discuss some puzzles observed in exclusive BB meson decays, concentrating on the large difference between the direct CP asymmetries in the B0πK±B^0\to \pi^\mp K^\pm and B±π0K±B^\pm\to \pi^0 K^\pm modes, the large B0π0π0B^0\to\pi^0\pi^0 branching ratio, and the large deviation of the mixing-induced CP asymmetries in the bsqqˉb\to sq\bar q penguins from those in the bccˉsb\to c\bar c s trees.Comment: 6 pages, 1 figure, talk presented at the 9th Workshop on High Energy Physics Phenomenology, Bhubaneswar, Orissa, India, Jan. 3-14, 2006; reference adde

    Inflation and nonequilibrium renormalization group

    Get PDF
    We study de spectrum of primordial fluctuations and the scale dependence of the inflaton spectral index due to self-interactions of the field. We compute the spectrum of fluctuations by applying nonequilibrium renormalization group techniques.Comment: 6 pages, 1 figure, submitted to J. Phys.

    Nonperturbative bound on high multiplicity cross sections in phi^4_3 from lattice simulation

    Full text link
    We have looked for evidence of large cross sections at large multiplicities in weakly coupled scalar field theory in three dimensions. We use spectral function sum rules to derive bounds on total cross sections where the sum can be expresed in terms of a quantity which can be measured by Monte Carlo simulation in Euclidean space. We find that high multiplicity cross sections remain small for energies and multiplicities for which large effects had been suggested.Comment: 23 pages, revtex, seven eps figures revised version: typos corrected, some rewriting of discusion, same resul

    B meson wave function from the BγlνB\to\gamma l\nu decay

    Full text link
    We show that the leading-power BB meson wave function can be extracted reliably from the photon energy spectrum of the BγlνB\to\gamma l\nu decay up to O(1/mb2)O(1/m_b^2) and O(αs2)O(\alpha_s^2) uncertainty, mbm_b being the bb quark mass and αs\alpha_s the strong coupling constant. The O(1/mb)O(1/m_b) corrections from heavy-quark expansion can be absorbed into a redefined leading-power BB meson wave function. The two-parton O(1/mb)O(1/m_b) corrections cancel exactly, and the three-parton BB meson wave functions turn out to contribute at O(1/mb2)O(1/m_b^2). The constructive long-distance contribution through the BVγB\to V\to\gamma transition, VV being a vector meson, almost cancels the destructive O(αs)O(\alpha_s) radiative correction. Using models of the leading-power BB meson wave function available in the literature, we obtain the photon energy spectrum in the perturbative QCD framework, which is then compared with those from other approaches.Comment: 11 pages, 5 figures with minor correction

    Okubo-Zweig-Iizuka-rule violation and B\to \eta^{(\prime)}K branching ratios

    Full text link
    We show that few-percent Okubo-Zweig-Iizuka-rule violating effects in the quark-flavor basis for the η\eta-η\eta' mixing can enhance the chiral scale associated with the ηq\eta_q meson few times. This enhancement is sufficient for accommodating the dramatically different data of the BηKB\to\eta^{\prime} K and BηKB\to\eta K branching ratios. We comment on other proposals for resolving this problem, including flavor-singlet contributions, axial U(1) anomaly, and nonperturbative charming penguins. Discrimination of the above proposals by means of the Bη()νB\to\eta^{(\prime)}\ell\nu and Bsη()B_s\to\eta^{(\prime)}\ell\ell data is suggested.Comment: 7 pages, 2 figures, discussion on B\to\eta^{(\prime)}K* added, more references adde

    BKB\to K Transition Form Factor up to O(1/mb2){\cal O}(1/m^2_b) within the kTk_T Factorization Approach

    Full text link
    In the paper, we apply the kTk_T factorization approach to deal with the BKB\to K transition form factor F+,0BK(q2)F^{B\to K}_{+,0}(q^2) in the large recoil regions. The B-meson wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B that include the three-particle Fock states' contributions are adopted to give a consistent PQCD analysis of the form factor up to O(1/mb2){\cal O} (1/m^2_b). It has been found that both the wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B can give sizable contributions to the form factor and should be kept for a better understanding of the BB meson decays. Then the contributions from different twist structures of the kaon wavefunction are discussed, including the SUf(3)SU_f(3)-breaking effects. A sizable contribution from the twist-3 wave function Ψp\Psi_p is found, whose model dependence is discussed by taking two group of parameters that are determined by different distribution amplitude moments obtained in the literature. It is also shown that F+,0BK(0)=0.30±0.04F^{B\to K}_{+,0}(0)=0.30\pm0.04 and [F+,0BK(0)/F+,0Bπ(0)]=1.13±0.02[F^{B\to K}_{+,0}(0)/F^{B\to \pi}_{+,0}(0)]=1.13\pm0.02, which are more reasonable and consistent with the light-cone sum rule results in the large recoil regions.Comment: 22 pages and 6 figure

    Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity

    Full text link
    If extra spacetime dimensions and low-scale gravity exist, black holes will be produced in observable collisions of elementary particles. For the next several years, ultra-high energy cosmic rays provide the most promising window on this phenomenon. In particular, cosmic neutrinos can produce black holes deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers. We determine the sensitivity of cosmic ray detectors to black hole production and compare the results to other probes of extra dimensions. With n \ge 4 extra dimensions, current bounds on deeply penetrating showers from AGASA already provide the most stringent bound on low-scale gravity, requiring a fundamental Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large as 4 TeV and may observe on the order of a hundred black holes in 5 years. We also consider the implications of angular momentum and possible exponentially suppressed parton cross sections; including these effects, large black hole rates are still possible. Finally, we demonstrate that even if only a few black hole events are observed, a standard model interpretation may be excluded by comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA and Fly's Eye comparison added; v3: Earth-skimming results modified and strengthened, published versio

    Reconstructing large running-index inflaton potentials

    Full text link
    Recent fits of cosmological parameters by the first year Wilkinson Microwave Anisotropy Probe (WMAP) measurement seem to favor a primordial scalar spectrum with a large varying index from blue to red. We use the inflationary flow equations to reconstruct large running-index inflaton potentials and comment on current status on the inflationary flow. We find previous negligence of higher order slow rolling contributions when using the flow equations would lead to unprecise results.Comment: Final version to appear in Class. Quant. Grav. References adde

    Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers

    Get PDF
    The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures
    corecore