689 research outputs found

    Brain-Speech Alignment Enhances Auditory Cortical Responses and Speech Perception

    Get PDF
    Asymmetry in auditory cortical oscillations could play a role in speech perception by fostering hemispheric triage of information across the two hemispheres. Due to this asymmetry, fast speech temporal modulations relevant for phonemic analysis could be best perceived by the left auditory cortex, while slower modulations conveying vocal and paralinguistic information would be better captured by the right one. It is unclear, however, whether and how early oscillation-based selection influences speech perception. Using a dichotic listening paradigm in human participants, where we provided different parts of the speech envelope to each ear, we show that word recognition is facilitated when the temporal properties of speech match the rhythmic properties of auditory cortices. We further show that the interaction between speech envelope and auditory cortices rhythms translates in their level of neural activity (as measured with fMRI). In the left auditory cortex, the neural activity level related to stimulus-brain rhythm interaction predicts speech perception facilitation. These data demonstrate that speech interacts with auditory cortical rhythms differently in right and left auditory cortex, and that in the latter, the interaction directly impacts speech perception performance

    Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences

    Get PDF
    The ability to track the statistics of our surroundings is a key computational challenge. A prominent theory proposes that the brain monitors for unexpected uncertainty - events which deviate substantially from model predictions, indicating model failure. Norepinephrine is thought to play a key role in this process by serving as an interrupt signal, initiating model-resetting. However, evidence is from paradigms where participants actively monitored stimulus statistics. To determine whether Norepinephrine routinely reports the statistical structure of our surroundings, even when not behaviourally relevant, we used rapid tone-pip sequences that contained salient pattern-changes associated with abrupt structural violations vs. emergence of regular structure. Phasic pupil dilations (PDR) were monitored to assess Norepinephrine. We reveal a remarkable specificity: When not behaviourally relevant, only abrupt structural violations evoke a PDR. The results demonstrate that Norepinephrine tracks unexpected uncertainty on rapid time scales relevant to sensory signals

    Nonprofit governance: Improving performance in troubled economic times

    Get PDF
    Nonprofit management is currently pressured to perform effectively in a weak economy. Yet, nonprofit governance continues to suffer from unclear conceptions of the division of labor between board of directors and executive directors. This online survey of 114 executive directors aims to provide clarification and recommendations for social administration

    Dynamic molecular mechanism of the nuclear pore complex permeability barrier

    Get PDF
    Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast S. cerevisiae NPCs at transport-relevant timescales. We show that the large intrinsically disordered domains of phenylalanine-glycine repeat nucleoporins (FG Nups) exhibit highly dynamic fluctuations to create transient voids in the permeability barrier that continuously shape-shift and reseal, resembling a radial polymer brush. Together with cargo-carrying transport factors the FG domains form a feature called the central plug, which is also highly dynamic. Remarkably, NPC mutants with longer FG domains show interweaving meshwork-like behavior that attenuates nucleocytoplasmic transport in vivo. Importantly, the bona fide nanoscale NPC behaviors and morphologies are not recapitulated by in vitro FG domain hydrogels. NPCs also exclude self-assembling FG domain condensates in vivo, thereby indicating that the permeability barrier is not generated by a self-assembling phase condensate, but rather is largely a polymer brush, organized by the NPC scaffold, whose dynamic gating selectivity is strongly enhanced by the presence of transport factors.</p

    Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1.

    Get PDF
    Tight binding of Gdown1 represses RNA polymerase II (Pol II) function in a manner that is reversed by Mediator, but the structural basis of these processes is unclear. Although Gdown1 is intrinsically disordered, its Pol II interacting domains were localized and shown to occlude transcription factor IIF (TFIIF) and transcription factor IIB (TFIIB) binding by perfect positioning on their Pol II interaction sites. Robust binding of Gdown1 to Pol II is established by cooperative interactions of a strong Pol II binding region and two weaker binding modulatory regions, thus providing a mechanism both for tight Pol II binding and transcription inhibition and for its reversal. In support of a physiological function for Gdown1 in transcription repression, Gdown1 co-localizes with Pol II in transcriptionally silent nuclei of early Drosophila embryos but re-localizes to the cytoplasm during zygotic genome activation. Our study reveals a self-inactivation through Gdown1 binding as a unique mode of repression in Pol II function

    Acute toxicity of essential oils of two Moroccan endemic species: Thymus broussonetii and Thymus leptobotrys

    Get PDF
    Abstract Thymus species essential oils are widely used in aromatherapy to treat several ailments. However, there is no report on their safety. In this study, we propose to investigate the acute toxicity of T. leptobotrys and T. broussonetii essential oils. These two species were selected on the basis of their frequency of medicinal use and commercial importance. Chemical analysis of these two species essential oil revealed that thymol, borneol, carvacrol and p-cymene were the main chemical constituents in T. broussonetii, whereas the essential oil of T. leptobotrys contains carvacrol (98 %) as the major component. In the acute toxicity assay, the animals showed no stereotypical symptoms associated with toxicity such as convulsion, ataxy, diarrhoea or increased diuresis. The calculated median lethal dose (LD 50 ) was estimated at 4.47 g/kg for T. broussonetii and 2.66 g/kg for T. leptobotrys

    Anti-tumor properties of blackseed (Nigella sativa L.) extracts

    Get PDF
    Abstract The objective of the present study was to evaluate the in vitro and in vivo anti-cancer effect of Nigella sativa L. seed extracts. The essential oil (IC 50 = 0.6%, v/v) and ethyl acetate (IC 50 = 0.75%) extracts were more cytotoxic against the P815 cell line than the butanol extract (IC 50 = 2%). Similar results were obtained with the Vero cell line. Although all extracts had a comparable cytotoxic effect against the ICO1 cell line, with IC 50 values ranging from 0.2 to 0.26% (v/v), tests on the BSR cell line revealed a high cytotoxic effect of the ethyl acetate extract (IC 50 = 0.2%) compared to the essential oil (IC 50 = 1.2%). These data show that the cytotoxicity of each extract depends on the tumor cell type. In vivo, using the DBA2/P815 (H 2 d ) mouse model, our results clearly showed that the injection of the essential oil into the tumor site significantly inhibited solid tumor development. Indeed, on the 30th day of treatment, the tumor volume of the control animals was 2.5 ± 0.6 cm 3 , whereas the tumor volumes of the essential oil-treated animals were 0.22 ± 0.1 and 0.16 ± 0.1 cm 3 when the animals were injected with 30 µL (28.5 mg)/mouse and 50 µL (47.5 mg)/mouse per 48 h (six times), respectively. Interestingly, the administration of the essential oil into the tumor site inhibited the incidence of liver metastasis development and improved mouse survival. Correspondence A. Zya

    Anti-tumor properties of black seed (Nigella Sativa)extract

    Get PDF
    Abstract The objective of the present study was to evaluate the in vitro and in vivo anti-cancer effect of Nigella sativa L. seed extracts. The essential oil (IC 50 = 0.6%, v/v) and ethyl acetate (IC 50 = 0.75%) extracts were more cytotoxic against the P815 cell line than the butanol extract (IC 50 = 2%). Similar results were obtained with the Vero cell line. Although all extracts had a comparable cytotoxic effect against the ICO1 cell line, with IC 50 values ranging from 0.2 to 0.26% (v/v), tests on the BSR cell line revealed a high cytotoxic effect of the ethyl acetate extract (IC 50 = 0.2%) compared to the essential oil (IC 50 = 1.2%). These data show that the cytotoxicity of each extract depends on the tumor cell type. In vivo, using the DBA2/P815 (H 2 d ) mouse model, our results clearly showed that the injection of the essential oil into the tumor site significantly inhibited solid tumor development. Indeed, on the 30th day of treatment, the tumor volume of the control animals was 2.5 ± 0.6 cm 3 , whereas the tumor volumes of the essential oil-treated animals were 0.22 ± 0.1 and 0.16 ± 0.1 cm 3 when the animals were injected with 30 µL (28.5 mg)/mouse and 50 µL (47.5 mg)/mouse per 48 h (six times), respectively. Interestingly, the administration of the essential oil into the tumor site inhibited the incidence of liver metastasis development and improved mouse survival

    Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch

    Get PDF
    Background: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset. Methodology: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as ‘‘virtual pitch’’) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component. Principal Findings: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies. Conclusions: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived i
    corecore