128 research outputs found

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin

    Get PDF
    The carbon catabolite repressor protein 4 (Ccr4)–Negative on TATA (Not) complex controls gene expression at two levels. In the nucleus, it regulates the basal transcription machinery, nuclear receptor-mediated transcription and histone modifications. In the cytoplasm, the complex is required for messenger RNA (mRNA) turnover through its two associated deadenylases, Ccr4 and Caf1. Not1 is the largest protein of the Ccr4–Not complex and serves as a scaffold for other subunits of the complex. Here, we provide evidence that human Not1 in the cytoplasm associates with the C-terminal domain of tristetraprolin (TTP), an RNA binding protein that mediates rapid degradation of mRNAs containing AU-rich elements (AREs). Not1 shows extensive interaction through its central region with TTP, whereas binding of Caf1 is restricted to a smaller central domain within Not1. Importantly, Not1 is required for the rapid decay of ARE-mRNAs, and TTP can recruit the Caf1 deadenylase only in presence of Not1. Thus, cytoplasmic Not1 provides a platform that allows a specific RNA binding protein to recruit the Caf1 deadenylase and thereby trigger decay of its target mRNAs

    A20 (Tnfaip3) Deficiency in Myeloid Cells Protects against Influenza A Virus Infection

    Get PDF
    The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV) produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-ΞΊB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections

    TLR2 Signaling Contributes to Rapid Inflammasome Activation during F. novicida Infection

    Get PDF
    Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1Ξ². Some intracellular bacteria subvert the TLR response by rapidly escaping the phagosome and entering the cytosol. However, these bacteria may be recognized by the inflammasome, a multi-protein complex comprised of a sensor protein, ASC and the cysteine protease caspase-1. Inflammasome activation leads to release of the proinflammatory cytokines IL-1Ξ² and IL-18 and death of the infected cell, an important host defense that eliminates the pathogen's replicative niche. While TLRs and inflammasomes are critical for controlling bacterial infections, it is unknown whether these distinct host pathways cooperate to activate defenses against intracellular bacteria.Using the intracellular bacterium Francisella novicida as a model, we show that TLR2(-/-) macrophages exhibited delayed inflammasome activation compared to wild-type macrophages as measured by inflammasome assembly, caspase-1 activation, cell death and IL-18 release. TLR2 also contributed to inflammasome activation in response to infection by the cytosolic bacterium Listeria monocytogenes. Components of the TLR2 signaling pathway, MyD88 and NF-ΞΊB, were required for rapid inflammasome activation. Furthermore, TLR2(-/-) mice exhibited lower levels of cell death, caspase-1 activation, and IL-18 production than wild-type mice upon F. novicida infection.These results show that TLR2 is required for rapid inflammasome activation in response to infection by cytosolic bacterial pathogens. In addition to further characterizing the role of TLR2 in host defense, these findings broaden our understanding of how the host integrates signals from spatiotemporally separated PRRs to coordinate an innate response against intracellular bacteria

    Genome-Wide Search Reveals the Existence of a Limited Number of Thyroid Hormone Receptor Alpha Target Genes in Cerebellar Neurons

    Get PDF
    Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development

    Vaccinia Virus Protein C6 Is a Virulence Factor that Binds TBK-1 Adaptor Proteins and Inhibits Activation of IRF3 and IRF7

    Get PDF
    Recognition of viruses by pattern recognition receptors (PRRs) causes interferon-Ξ² (IFN-Ξ²) induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV) protein C6 is identified as an inhibitor of PRR-induced IFN-Ξ² expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-ΞΊB and IFN regulatory factors (IRFs) to activate the IFN-Ξ² promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-ΞΊB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1) and IΞΊB kinase-Ξ΅ (IKKΞ΅), which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKΞ΅-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKΞ΅ complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7

    Disrupting the Acyl Carrier Protein/SpoT Interaction In Vivo: Identification of ACP Residues Involved in the Interaction and Consequence on Growth

    Get PDF
    In bacteria, Acyl Carrier Protein (ACP) is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation

    TRAF6 Establishes Innate Immune Responses by Activating NF-ΞΊB and IRF7 upon Sensing Cytosolic Viral RNA and DNA

    Get PDF
    BACKGROUND:In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor kappaB (NF-kappaB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-kappaB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed. PRINCIPAL FINDINGS:Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-kappaB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFbeta-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-kappaB activation, were not essential for RLH-mediated NF-kappaB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-kappaB and IRF7. CONCLUSIONS/SIGNIFICANCE:Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection

    Site-selective protein-modification chemistry for basic biology and drug development.

    Get PDF
    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.We thank FCT Portugal (FCT Investigator to G.J.L.B.), the EU (Marie-Curie CIG to G.J.L.B. and Marie-Curie IEF to O.B.) and the EPSRC for funding. G.J.L.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.239
    • …
    corecore