84 research outputs found

    Divergent drivers of the microbial methane sink in temperate forest and grassland soils

    Get PDF
    Aerated topsoils are important sinks for atmospheric methane (CH4) via oxidation by CH4‐oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land‐use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land‐use intensity of grasslands had a negative effect on PMORs (−40%) in almost all regions and fertilization was the predominant factor of grassland land‐use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)‐α was the dominant group of MOBs in the forests. In contrast, USC‐γ was absent in more than half of the forest soils but present in almost all grassland soils. USC‐α abundance had a direct positive effect on PMOR in forest, while in grasslands USC‐α and USC‐γ abundance affected PMOR positively with a more pronounced contribution of USC‐γ than USC‐α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC‐α, and a positive on USC‐γ abundance. We conclude that reduction in grassland land‐use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659ESFMinistry of Education, Science and Culture of Mecklenburg‐Western PomeraniaPeer Reviewe

    Temporal and small-scale spatial variation in grassland productivity, biomass quality, and nutrient limitation

    Get PDF
    Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly

    Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation

    Get PDF
    Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT

    Diagnostic Accuracy of a High-Sensitivity Cardiac Troponin Assay with a Single Serum Test in the Emergency Department.

    Get PDF
    OBJECTIVES: We sought to evaluate diagnostic accuracy of a high-sensitivity cardiac troponin I (hs-cTnI) assay for acute coronary syndromes (ACS) in the emergency department (ED). The assay has high precision at low concentrations and can detect cTnI in 96.8% of healthy individuals. METHODS: In successive prospective multicenter studies ("testing" and "validation"), we included ED patients with suspected ACS. We drew blood for hs-cTnI [Singulex ClarityÂź cTnI; 99th percentile, 8.67 ng/L; limit of detection (LoD), 0.08 ng/L] on arrival. Patients also underwent hs-cTnT (Roche Elecsys) testing over ≄3 h. The primary outcome was an adjudicated diagnosis of ACS, defined as acute myocardial infarction (AMI; prevalent or incident), death, or revascularization within 30 days. RESULTS: The testing and validation studies included 665 and 2470 patients, respectively, of which 94 (14.1%) and 565 (22.9%) had ACS. At a 1.5-ng/L cutoff, hs-cTnI had good sensitivity for AMI in both studies (98.7% and 98.1%, respectively) and would have "ruled out" 40.1% and 48.9% patients. However, sensitivity was lower for ACS (95.7% and 90.6%, respectively). At a 0.8-ng/L cutoff, sensitivity for ACS was higher (97.5% and 97.9%, ruling out 28.6% patients in each cohort). The hs-cTnT assay had similar performance at the LoD (24.6% ruled out; 97.2% sensitivity for ACS). CONCLUSIONS: The hs-cTnI assay could immediately rule out AMI in 40% of patients and ACS in >25%, with similar accuracy to hs-cTnT at the LoD. Because of its high precision at low concentrations, this hs-cTnI assay has favorable characteristics for this clinical application

    Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands

    Get PDF
    Grassland management intensity influences nutrient cycling both directly, by changing nutrient inputs and outputs from the ecosystem, and indirectly, by altering the nutrient content, and the diversity and functional composition of plant and microbial communities. However, the relative importance of these direct and indirect processes for the leaching of multiple nutrients is poorly studied. We measured the annual leaching of nitrate, ammonium, phosphate and sulphate at a depth of 10 cm in 150 temperate managed grasslands using a resin method. Using Structural Equation Modeling, we distinguished between various direct and indirect effects of management intensity (i.e. grazing and fertilization) on nutrient leaching. We found that management intensity was positively associated with nitrate, ammonium and phosphate leaching risk both directly (i.e. via increased nutrient inputs) and indirectly, by changing the stoichiometry of soils, plants and microbes. In contrast, sulphate leaching risk was negatively associated with management intensity, presumably due to increased outputs with mowing and grazing. In addition, management intensification shifted plant communities towards an exploitative functional composition (characterized by high tissue turnover rates) and, thus, further promoted the leaching risk of inorganic nitrogen. Plant species richness was associated with lower inorganic nitrogen leaching risk, but most of its effects were mediated by stoichiometry and plant community functional traits. Maintaining and restoring diverse plant communities may therefore mitigate the increased leaching risk that management intensity imposes upon grasslands

    Lower diagnostic accuracy of hs-cTnI in patients with prior coronary artery bypass grafting

    Get PDF
    High-sensitivity cardiac troponin T (hs-cTnT) and the ESC 0/1h-hs-cTnT-algorithm have worse performance in the early diagnosis of myocardial infarction (MI) in patients with prior coronary artery bypass grafting (CABG). It is unknown, whether this concern applies also to hs-cTnI, the most widely used analyte worldwide.; In an international multicenter diagnostic study, two cardiologists centrally adjudicated the final diagnosis in patients presenting to the emergency department with symptoms suggestive of MI according to the Third Universal Definition of MI. The objective was to compare the diagnostic accuracy of hs-cTnI assays and their performance within the ESC hs-cTnI 0/1h-algorithms in patients with versus without prior CABG. Findings were externally validated in an U.S. multicenter diagnostic study.; A total of 392/5'200 patients (8%) had prior coronary artery bypass grafting (CABG). Diagnostic accuracy of hs-cTnI as quantified by the area under the receiver-operating characteristics-curve (AUC) in these patients was high, but lower versus patients without prior CABG (e.g. hs-cTnI-Architect 0.91 versus 0.95; p = 0.016). Sensitivity/specificity of rule-out/in by the European Society of Cardiology (ESC) 0/1h-hs-cTnI-algorithms remained very high [e.g. hs-cTnI-Architect 100% and 93.5%], but efficacy was lower (52% versus 74%, p < 0.01). External validation (n = 2113) confirmed these findings in 192 patients with prior CABG using hs-cTnI-Atellica, with 52% versus 36% (p < 0.001) remaining in the observe zone.; Diagnostic accuracy of hs-cTnI and efficacy of the ESC 0/1h-hs-cTnI-algorithms are lower in patients with prior CABG, but sensitivity/specificity remain very high.; https://clinicaltrials.gov/ct2/show/NCT00470587, number NCT00470587

    Comparing the utility of clinical risk scores and integrated clinical judgement in patients with suspected acute coronary syndrome

    Full text link
    Aims The utility of clinical risk scores regarding the prediction of major adverse cardiac events (MACE) is uncertain. We aimed to directly compare the prognostic performance of five established clinical risk scores as well as an unstructured integrated clinical judgement (ICJ) of the treating emergency department (ED) physician. Methods and results Thirty-day MACE including all-cause death, life-threatening arrhythmia, cardiogenic shock, acute myocardial infarction (including the index event), and unstable angina requiring urgent coronary revascularization were centrally adjudicated by two independent cardiologists in patients presenting to the ED with acute chest discomfort in an international multicentre study. We compared the prognostic performance of the HEART score, GRACE score, T-MACS, TIMI score, and EDACS, as well as the unstructured ICJ of the treating ED physician (visual analogue scale to estimate the probability of acute coronary syndrome, ranging from 0 to 100). Among 4551 eligible patients, 1110/4551 patients (24.4%) had at least one MACE within 30 days. Prognostic accuracy was high and comparable for the HEART score, GRACE score, T-MACS, and ICJ [area under the receiver operating characteristic curve (AUC) 0.85–0.87] but significantly lower and only moderate for the TIMI score (AUC 0.79, P &lt; 0.001) and EDACS (AUC 0.74, P &lt; 0.001), resulting in sensitivities for the rule-out of 30-day MACE of 93–96, 87 (P &lt; 0.001), and 72% (P &lt; 0.001), respectively. Conclusion The HEART score, GRACE score, T-MACS, and unstructured ICJ of the treating physician, not the TIMI score or EDACS, performed well for the prediction of 30-day MACE and may be considered for routine clinical use. Trial registration ClinicalTrials.gov number NCT0047058

    Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands

    Get PDF
    Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss

    The Evolution of Ecological Diversity in Acidobacteria

    Full text link
    Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success
    • 

    corecore