1,090 research outputs found

    Impact of doping on the performance of p-type Be-doped Al0.29 Ga0.71As Schottky diodes

    Get PDF
    The effects of changing the acceptors concentration on the electrical characteristics of Au/Ti on Be-doped Al0.29Ga0.71As Schottky contact have been investigated in the temperature range of 100–400 K. Using three devices with three different doping levels, the barrier height (ΦB), ideality factor (n) and series resistance (RS) for each diode were evaluated using both thermionic emission (TE) theory and Cheung's method. Our experimental results showed that the sample with a moderate doping concentration of 3×1016 cm-3 has the best performance, including ideality factor of 1.25 and rectification ratio of 2.24×103 at room temperature. All samples showed an abnormal behavior of reducing ΦB and increasing n with increase of temperature. This behavior was attributed, in case of low concertation samples, to barrier inhomogeneity and was explained by assuming a Gaussian distribution of barrier heights at the interface. While for the heavily doped sample, such non-ideal manner was ascribed with tunneling through the field emission (FE) mechanism

    Investigation of Natural Effective Gamma Dose Rates case study: Ardabil Province in Iran

    Get PDF
    Gamma rays pose enough energy to form charged particles and adversely affect human health. Since, the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardabil province from 2009 to 2010. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed dose for Ardabil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSvh-1, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardabil province was estimated to be 1.73 (1.35-2.39) mSv, which is on average 2 times higher than the world population weighted average

    Enhancing Controlled Environment Agriculture in Desert Ecosystems with AC/DC Hybrid Solar Technology

    Full text link
    Received: 29 March 2023. Accepted: 26 May 2023.Controlled Environment Agriculture (CEA) plays a crucial role in promoting sustainable farming practices within the challenging climate of the Arabian Peninsula. Traditional CEAs, however, are confronted with excessive water and electricity consumption due to the region's elevated temperatures and humidity levels. To address these challenges, an innovative project was carried out at the Al Dhaid Research Station, United Arab Emirates, integrating solar-powered cooling and irrigation, closed hydroponic systems, net-house structures, root zone cooling, and ultra-low-energy drippers. The study employed a cooled greenhouse alongside two net houses, one of which was equipped with a solar-powered cooling and irrigation system. Cucumber crops were cultivated within each structure, demonstrating that the combined technologies could prolong production periods despite increasing temperatures, while simultaneously reducing energy consumption by 95% and water usage by 80%, without compromising crop yield. The findings of this study suggest that the implementation of this novel approach holds significant potential for boosting crop productivity and water efficiency in desert agriculture systems.This publication showcases a collaborative effort between ICARDA and NARS in the countries of the Arabian Peninsula. The contributions and efforts of the NARS, particularly in the UAE where this study was conducted, are highly acknowledged and appreciated. We extend our heartfelt gratitude to the Arab Fund for Economic and Social Development (AFESD) and The Kuwait Fund for Arab Economic Development (KFAED) for their invaluable financial support to ICARDA-APRP. Their generous contributions have played a crucial role in facilitating the research and implementation of this project

    Evaluation of Plant Nitrogen Use Efficiency in Different Crop Rotations

    Get PDF
    IntroductionThere is an urgent need to increase per capita food production to compete with high population growth while maintaining environmental sustainability. Because nitrogen plays a vital role in food production for humans and livestock, nitrogen management is essential in food production. In most cropping systems, nitrogen management seems to be a major challenge due to its high mobility and natural tendency for losses from the soil-plant system to the environment. Soil organic carbon plays a key role in improving soil ecological conditions. Adding organic matter to the soil is an excellent tool for improving physical, chemical and biological conditions and is almost always desirable. Soil organic carbon stock of crop ecosystems may be increased by improving farming practices. The application of green manure, fertilizer and the return of crop straw into the soil are known as management operations to increase soil organic carbon. Fertilizers, especially nitrogen, increase crop yield, and organic carbon is returned to the soil through roots and debris, which in most cases leads to increased soil organic carbon.Materials and MethodsThis study was conducted with the aim of utilizing a set of improving farming practices in diverse cropping systems to improve nitrogen efficiency during two crop years. Farming practices including removal of summer fallow were used by importing three crops of mung bean, corn and wild rocket in rotation plus nitrogen supply levels factor. The crop rotation factor was applied in four levels of Fallow-wheat, mung bean-wheat, corn-wheat and wild rocket-wheat and the factor of nitrogen fertilizer (0, 180 and 360 kg.ha-1) in a randomized complete block design as factorial. Soil mineral nitrogen (nitrate and ammonium) were measured before sowing wheat and grain, straw and total plant nitrogen after harvest. Uptake efficiency, utilization efficiency, agronomic efficiency and nitrogen harvest index were calculated.Results and DiscussionThe results of combined analysis of variance showed that the crop rotation and nitrogen were significantly effective (ρ ≤ 0.01) on plant nitrogen, harvest index and nitrogen efficiency. Increasing nitrogen fertilizer up to 360 kg.ha-1 increased grain nitrogen, straw nitrogen, total plant nitrogen and also nitrogen harvest index. While the best uptake, utilization and agronomic efficiency of nitrogen was observed on the treatment without nitrogen fertilizer. Comparison of the means showed that the wild rocket-wheat crop rotation had the best result among all measured traits except utilization efficiency, while the utilization efficiency in the corn-wheat crop rotation showed the best performance. The results clearly show the effect of increasing organic carbon on nitrogen availability and grain nitrogen concentration as well as the role of cover crops and legume, in increasing access to nitrogen. The amount of grain nitrogen was directly affected by the amount of nitrogen fertilizer. The highest correlation coefficient was seen between agronomic and uptake efficiency (r = 0.96**). There was also a significant inverse relationship between nitrogen harvest index and the types of calculated efficiencies. The amount of uptake efficiency and agronomic efficiency in all crop rotations except corn-wheat in the second year improved compared to the first year. The highest increase in efficiency in the second year was related to the wild rocket-wheat crop rotation. In the conditions of 360 and 180 kg.ha-1 nitrogen fertilizer, the nitrogen harvest index increased in the second year compared to the first year. While in conditions without nitrogen fertilizer, nitrogen harvest index has a significant decrease. Therefore, at least in the short term, to increase the nitrogen harvest index, the minimum supply of nitrogen fertilizer should be used, even under improving crop management conditions such as green manure, removal of fallow and introduction of legumes in rotation and return of crop residues.ConclusionContinuous cropping, removal of fallow, use of cover crops and legume and preservation of residues led to increased carbon and nitrogen sequestration in soil and consequently increase biomass and nitrogen concentration in plant tissue. On the other hand, crop rotations that increased soil organic carbon and improved soil fertility quickly improved nitrogen efficiency and nitrogen harvest index

    p16INK4A Positively Regulates Cyclin D1 and E2F1 through Negative Control of AUF1

    Get PDF
    /pRB/E2F pathway, a key regulator of the critical G1 to S phase transition of the cell cycle, is universally disrupted in human cancer. However, the precise function of the different members of this pathway and their functional interplay are still not well defined. -dependent manner, and several of these genes are also members of the AUF1 and E2F1 regulons. We also present evidence that E2F1 mediates p16-dependent regulation of several pro- and anti-apoptotic proteins, and the consequent induction of spontaneous as well as doxorubicin-induced apoptosis. is also a modulator of transcription and apoptosis through controlling the expression of two major transcription regulators, AUF1 and E2F1
    corecore