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Abstract
The generation of attosecond pulse trains at free-electron lasers opens new opportunities in
ultrafast science, as it gives access, for the first time, to reproducible, programmable, extreme
ultraviolet (XUV) waveforms with high intensity. In this work, we present a detailed analysis of the
theoretical model underlying the temporal characterization of the attosecond pulse trains recently
generated at the free-electron laser FERMI. In particular, the validity of the approximations used
for the correlated analysis of the photoelectron spectra generated in the two-color photoionization
experiments are thoroughly discussed. The ranges of validity of the assumptions, in connection
with the main experimental parameters, are derived.

1. Introduction

Attosecond pulses of light and electrons allow one to investigate the fastest events occurring outside the
nucleus [1]. In particular, attosecond pulse trains and isolated attosecond pulses enable time-resolved
investigations of electronic processes occurring in atoms, molecules and surfaces by using an extreme
ultraviolet (XUV) pump—near infrared (NIR) probe approach [2]. The implementation of XUV
pump–XUV probe time-resolved schemes in the attosecond domain has already been demonstrated in a
few experimental studies [3, 4], but its general use still remains a formidable challenge, due to the
intrinsically low conversion efficiency of the high-order harmonic generation (HHG) process [5].

XUV and x-ray pulses delivered by free electron lasers (FELs) present complementary characteristics to
HHG-based sources, with energies per pulse ranging from a few hundreds of μJ to a few mJ and pulse

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/abef29
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1455-9051
https://orcid.org/0000-0003-1610-5811
https://orcid.org/0000-0001-9570-6361
https://orcid.org/0000-0002-7289-5072
https://orcid.org/0000-0003-1415-7327
https://orcid.org/0000-0001-5491-7752
mailto:giuseppe.sansone@physik.uni-freiburg.de


New J. Phys. 23 (2021) 043046 P K Maroju et al

durations typically in the femtosecond time domain. For pump–probe experiments, a main limitation of
FEL-based XUV/x-ray sources is the synchronization with an external laser. Timing-jitter values depend on
the specific facility, but they usually range from a few tens [6] to a few femtoseconds [7].

Several approaches have been advanced for the generation of attosecond pulses using FELs [8–10].
Recently, the generation of isolated attosecond pulses in the soft and hard x-ray spectral range was
demonstrated [11, 12]. The generation scheme is based on the confinement of the lasing part of the electron
bunch [13]. Due to the stochastic nature of the self-amplified spontaneous emission process, the
characteristics of these pulses (spectrum, temporal structure and duration) change on a shot-to-shot basis
[14], calling for a single-shot technique for their temporal characterization [15].

At the seeded FEL FERMI [16], the generation of two phase-locked harmonics was demonstrated in
2016 [17], allowing the coherent control of electronic processes by mixing XUV harmonics [18–20] and
giving access to the temporal characterization of the relative phase of two XUV harmonics [21]. Multi-color
phase-coherent harmonics (three and four harmonics) were also demonstrated at FERMI [22]; in this
experiment, the temporal structure of the harmonic spectrum consisted of a sequence of attosecond pulses,
whose temporal structure could be finely controlled by changing the relative amplitudes and phases
between the harmonics. The temporal characterization was based on a cross-correlation measurement of
the photoelectron spectra generated by single XUV-photon absorption and multiple-NIR photon
absorption and emission. In the presence of a NIR field, the outgoing photoelectron wave packet, released
by absorption of a single XUV photon, can exchange (absorb or emit) additional NIR photons. The
interaction with the NIR field leads to the formation of additional lines in the photoelectron spectra,
intermediate between the main lines, usually denoted as sidebands. This technique is widely used in
attosecond metrology with HHG-sources for the temporal characterization of attosecond pulse trains. In
this approach, usually denoted as reconstruction of attosecond bursts by beating of two-photon transitions
(RABBITT) [23], the relative phase between the odd harmonics of the fundamental frequency ωNIR is
characterized by measuring the variations of the sideband intensities as a function of the relative delay τ
between the XUV and NIR fields. The intensities oscillate with period T = π/ωNIR and control of the
relative delay well below the period of the optical cycle T is required for the observation of the oscillations.
This approach cannot be employed at FELs, due to the timing jitter between the XUV waveform and the
NIR field [7]. This problem was overcome by the correlation analysis of the sidebands of different energies
of the single-shot photoelectron spectra. In particular, the shape of the correlation plots revealed the relative
timing between the harmonics, thus giving access to the relative phase of the harmonics and allowing the
reconstruction of the attosecond pulses.

In reference [22], the experimental photoelectron spectra were analyzed using a model based on the
strong-field approximation (SFA). Within this framework, a few assumptions must be fulfilled to derive the
form of the correlation plots. These assumptions depend on the NIR field intensity and on the energy of the
photoelectrons. A detailed analysis of these assumptions is required to estimate the range of validity of the
approach.

The manuscript is organized as follows: we first present the experimental setup implemented for the
generation and temporal characterization of multiple phase-coherent harmonics at FERMI. We then
introduce the theoretical model used to simulate the photoelectron spectra. The approximations leading to
the equations describing the shape of the correlation plots are introduced. The experimental results and in
particular, the calibration procedure used and the intensity dependence of the measured correlation plots,
are presented. Finally, the different approximations are introduced and their validity range is discussed.

2. Experimental setup

The experimental setup is shown in figure 1. The experiment was performed at the FEL FERMI, using a
seed laser with photon energy �ωUV = 4.65 eV, obtained as the third harmonic of a NIR laser with photon
energy �ωNIR = 1.55 eV (� indicates the reduced Planck constant). The six undulators available at FERMI
were used for the generation of three or four harmonics of the fundamental seed pulse. The harmonics of
the seed laser are generated using the technique of high gain harmonic generation [16]. Between each pair
of consecutive undulators, a phase shifter (a magnetic chicane, which can extend the path followed by the
electron bunch) was used to control the relative phases between the different harmonics [17, 22], by
delaying the electron bunch with respect to the radiation emitted in the upstream undulators. The
generated harmonics were focused in the interaction volume by a Kirkpatrick–Baez (KB) mirror setup. The
NIR pulse was collinearly recombined with the XUV radiation using a drilled mirror placed between the KB
mirrors and the interaction point. Both pulses were linearly polarized with polarization direction along the
spectrometer axis. A delay jitter τ of about ±3 fs was estimated between the arrival times of the two pulses
at the gas target [7]. Single-shot photoelectron spectra in neon were acquired using a magnetic bottle
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Figure 1. Experimental setup for the generation of three (a) and four (b) phase-coherent harmonics of the seed laser using the
six undulators Uj (j = 1–6) available at FERMI. The phase shifters PSi with i = 2, 4 (i = 2, 3) were used to change the relative
phases between the harmonics in the three-harmonic (four-harmonic) configuration. The harmonics were focused in the jet
created by a gas nozzle using a KB mirror system. The harmonics and the NIR pulse were collinearly recombined using a drilled
mirror. The photoelectron spectra were acquired using a magnetic-bottle electron spectrometer collecting only the
photoelectrons emitted in the upward semi-volume. The colors (green and faint red) correspond to the two poles of the dipole
magnet; the undulators in panel (b) represented in grey are not used for generation of harmonics. The colors purple, violet,
indigo and blue represent the harmonics generated in the undulators. H7, H8, H9 and H10 are the harmonics generated in the
undulators.

Table 1. Photon energies (�ωq) and amplitudes (Fq) of the harmonic q for the three- (a) and four-harmonic cases (b). The
amplitudes of the harmonics were rescaled to the area of the peak corresponding to the 8th harmonic. The error bars for the
amplitudes were estimated from the standard deviation of the single shot harmonic intensities. The error bars for the photon
energies were estimated as the fluctuations of the order of 10−4 of the central frequency.

�ω10 (eV) �ω9 (eV) �ω8 (eV) �ω7 (eV)

(a) — 42.27 ± 0.04 37.57 ± 0.04 32.88 ± 0.03
(b) 46.96 ± 0.05 42.27 ± 0.04 37.57 ± 0.04 32.88 ± 0.03

F10 (arb. u.) F9 (arb. u.) F8 (arb. u.) F7 (arb. u.)

(a) — 0.95 ± 0.06 1.00 ± 0.03 0.89 ± 0.06
(b) 0.59 ± 0.07 0.76 ± 0.06 1.00 ± 0.05 1.03 ± 0.05

electron spectrometer optimised to collect only the photoelectrons emitted towards the electron detector.
Typically ∼5000 photoelectrons per laser shot were produced. For each setting of the phase shifter delays,
usually 10 000–12 000 shots were acquired at 50 Hz. The intensity of the NIR pulses in the interaction
region was changed by means of a half-wave plate and a polarizer placed before the recombination mirror
(not shown).

For the three and four harmonic configurations, the harmonics were generated by three pairs of
consecutive undulators (figure 1(a)), and four single undulators (figure 1(b)), respectively. In both the
configurations, higher harmonics were generated by the first undulators and the later ones were used to
generate the lower harmonics. The relative phase between the harmonics was modified using the phase
shifters PS2 and PS4 for the three harmonic case, and the phase shifters PS2 and PS3 for the four harmonic
case (shown in red in figure 1). The intensity of the single harmonics changed on a shot-to-shot basis by
about 5%. The typical parameters of the XUV harmonics are reported in table 1. The intensity of the NIR
was estimated to be INIR = 1012 W cm−2.

3. Theory

3.1. Definitions
We simulated the photoelectron spectra generated by the two-color photoionization using the following
expression for the electric fields:

EXUV(t) =
qmax∑

q=qmin

1

2

[
Ẽq(t) + Ẽ∗

q(t)
]

uXUV

=

qmax∑
q=qmin

1

2

[
Fqf (t) exp(iqωUVt + iϕq) + c.c.

]
uXUV,

ENIR(t, τ) = FNIRfNIR(t − τ) sin [ωNIR(t − τ)] uNIR, (1)
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where q is the harmonic order, ωUV is the central frequency of the FEL seed laser, τ is the delay between
XUV and NIR, Fq and ϕq are the amplitude and phase of the qth harmonic, and FNIR and ωNIR = ωUV/3 are

the amplitude and central frequency of the NIR pulse, respectively. Ẽq(t) indicates the complex form of the
electric field of the qth harmonic, and qmin and qmax indicate the minimum and maximum harmonic order
of the comb, uXUV and uNIR are the polarization vectors of the XUV and NIR pulses respectively. Both the
XUV and NIR pulses are linearly polarized along the axis of the magnetic bottle electron spectrometer (see
figure 1). In the following we will consider two cases: (qmin, qmax) = (7, 9) (three-harmonic case) and
(qmin, qmax) = (7, 10) (four-harmonic case). We assume a Gaussian temporal envelope for each harmonic
( f(t)) and for the NIR pulse ( fNIR(t)) with full-width at half maximum durations FWHMXUV = 50 fs and
FWHMNIR = 60 fs, respectively. The experimental values of the duration of the different harmonics are
presented in reference [24]. They show small differences for similar duration of the seed pulse. For this
reason and for the sake of simplicity, we assumed in our model that all harmonics are characterized by the
same pulse duration. The intensity envelope of the attosecond pulse train can be written as:

I(t) ∝ 1

2

∣∣∣∣∣∣
qmax∑

q=qmin

Ẽq(t)

∣∣∣∣∣∣
2

=
1

2

∣∣∣∣∣∣
qmax∑

q=qmin

Fqf (t) exp
(
iqωUVt + iϕq

)∣∣∣∣∣∣
2

, (2)

and it can be expressed in terms of the phase [22]:

η =
ϕqmax − ϕqmin

qmax − qmin
, (3)

and of the phase differences Δϕq−1,q,q+1:

Δϕq−1,q,q+1 = (ϕq+1 − ϕq) − (ϕq − ϕq−1) = ϕq+1 + ϕq−1 − 2ϕq. (4)

The phase η is proportional to the overall group-delay (GD) of the harmonic spectrum:

GD(ω) =
dϕ(ω)

dω
� (ϕqmax − ϕqmin )

(qmax − qmin)ωUV
=

η

ωUV
, (5)

where ϕ(ω) indicates the phase of the complete XUV spectrum. The group delay corresponds, in the limit
of a long pulse train, to an overall delay between the periodic attosecond pulse structure and the temporal
envelope of the single harmonic [22], and it does not affect significantly the intensity profile.

The phase difference Δϕq−1,q,q+1 is proportional to the group-delay dispersion (GDD) of the harmonic
spectrum, which is defined as the second derivative of the spectral phase with respect to the frequency:

GDD(ω) =
d2ϕ(ω)

dω2
� (ϕq+1 − ϕq)/ωUV − (ϕq − ϕq−1)/ωUV

ωUV
=

Δϕq−1,q,q+1

ω2
UV

. (6)

As we will show in the following section our experimental approach gives direct access to the GDD of
the harmonic comb.

The phase of the harmonics can be controlled through phase shifters, which introduce a controllable
delay τ s between the different harmonics. In particular, in the experiment with three harmonics the phase
shifters PS2 (j = 2) and PS4 (k = 4) were used, while for the four harmonic case the phase shifters PS2

(j = 2) and PS3 (k = 3) were implemented. The additional phases of the harmonics are then given by:

ϕ10 = ϕ(0)
10 , ϕ9 = ϕ(0)

9 ,

ϕ8 = ϕ(0)
8 − 8ωUV(τsj), ϕ7 = ϕ(0)

7 − 7ωUV(τsj + τsk),
(7)

where ϕ(0)
q indicates the initial phase of the qth harmonic. The phase differences Δϕ7,8,9 and Δϕ8,9,10 are

thus expressed by the relations:

Δϕ8,9,10 =
(
ϕ(0)

10 + ϕ(0)
8 − 2ϕ(0)

9

)
− 8ωUVτsj, (8)

Δϕ7,8,9 =
(
ϕ(0)

9 + ϕ(0)
7 − 2ϕ(0)

8

)
+ 9ωUVτsj − 7ωUVτsk. (9)

The phase difference Δϕ8,9,10 (Δϕ7,8,9) depends only on the delay τ sj (τ sj, τ sk).

4
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Figure 2. Schematic energy diagram for the characterization of attosecond pulse trains at FERMI. Two sidebands S(±)
q,q+1 are

present between each pair of consecutive harmonics (q and q + 1). Each sideband can be populated from the ground state (solid
grey line) through the absorption of one photon from the harmonic q and q + 1 (violet arrows) and the emission or absorption
of one or two NIR photons (red arrows). Additional pathways characterized by the absorption of one photon of the harmonics
q − 1 and four and five NIR photons (light red arrows) can contribute to the sidebands S(−)

q,q+1 and S(+)
q,q+1, respectively. Ip indicates

the ionization potential of the target atom.

3.2. Theoretical model
The simulations of the photoelectron spectra generated by the combination of the XUV attosecond
waveforms (EXUV(t)) and the NIR (ENIR(t)) pulses are based on the SFA [25]. The amplitude of the
photoelectron wave packet emitted with final momentum p for a delay τ between the XUV and NIR pulses,
b(p, τ), is given by (atomic units are used) [26–28]:

b(p, τ) = i

∫ +∞

−∞
dt′EXUV(t′)d

[
p + ANIR(t′, τ)

]
exp

{
−i

∫ +∞

t′
dt′′

[
1

2
(p + ANIR(t′′, τ))2

]
+ iIpt′

}
, (10)

where ANIR(t) is the vector potential of the NIR pulse, t′ the ionisation instant, Ip the ionisation potential of
the atom, and d

[
p + ANIR(t′, τ)

]
is the matrix element of the dipole operator describing the transition from

the ground state to the continuum state with momentum p + ANIR(t′, τ) after the absorption of an XUV
photon. Important information on the correlated variation of the sidebands can be derived analytically
from equation (10). For the sake of simplicity, we neglect the slow intensity variation due to the envelopes
f(t), fNIR(t) and consider a constant amplitude of the single XUV harmonic and NIR field in deriving the
equations of the sideband intensities. For intensities of the NIR field less than 3 ×1012 W cm−2, we can also
neglect the term proportional to A2

NIR in equation (10). We will indicate this approximation as
approximation I (see section 5.1). We will comment on the validity of this approximation (and also on two
additional ones) in section 5. Moreover, we assume that the dipole matrix element is constant over the
energy range spanned by the XUV spectrum (d = const.). The assumption of constant dipole matrix
element implies that we cannot analyze the contribution of the different partial waves to the
photoionization spectrum. A more detailed description involving the contribution of the different partial
waves using the perturbation theory is given in the supplementary material of the earlier publication [22].
The results from the perturbation theory in the approximation of equal amplitudes of the harmonics
support the simulations based on the SFA approximation, confirming that the intensities of the sidebands
oscillate as a function of the phase difference between the harmonics even after integrating over the half
hemisphere. We consider only electrons emitted parallel to the polarisation direction of the two fields:
p ‖ uXUV,NIR. These approximations allow one to identify the most relevant properties of the sidebands
generated in the two-color field. The term p · ANIR(t′′, τ), arising from the phase factor in equation (10), can
be expanded in Bessel functions Jn using the relation:

eix sin φ =
+∞∑

n=−∞
Jn(x)einφ. (11)

5
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Figure 3. Correlation plots S(−)
8,9 vs S(−)

7,8 (a), S(+)
8,9 vs S(+)

7,8 (b) and P8,9 vs P7,8 (c) for the phase differences Δϕ7,8,9 = π/4 (blue) and
3π/4 (red) rad. The quantities were simulated using equation (10) (without the approximations) and the definition of the
oscillating component of the sideband introduced in equation (15). The energy of the photoelectron corresponds to the
photoionization of neon atoms by the harmonics q = 7, 8, 9 of the seed laser. The intensity of the NIR field was
INIR = 8.8 × 1011 W cm−2. Equal amplitudes for the three harmonics were assumed: F7 = F8 = F9.

Different pathways can lead to the population of the sidebands as shown in figure 2. Depending on the
intensity of the NIR field, a different number of exchanged NIR photons must be considered. We first
consider the case of up to two-NIR photon transitions (approximation II, discussed in section 5.2):

eix sin φ ≈ J−1(x)e−iφ + J0(x) + J1(x)eiφ. (12)

The intensities of two consecutive sidebands can be then expressed as:

S(−)
q,q+1

(
x(−)

q,q+1

)
=

1

4

[
J2

1 F2
q − 2J1J2FqFq+1 cos(3ωNIRτ + ϕq+1 − ϕq) + J2

2 F2
q+1

]
,

S(+)
q,q+1

(
x(+)

q,q+1

)
=

1

4

[
J2

2 F2
q + 2J1J2FqFq+1 cos(3ωNIRτ + ϕq+1 − ϕq) + J2

1 F2
q+1

]
,

(13)

where

x(−)
q,q+1 =

√
2[(q + 1/3)ωUV − Ip]FNIR/ω

2
NIR,

x(+)
q,q+1 =

√
2[(q + 2/3)ωUV − Ip]FNIR/ω

2
NIR.

(14)

For the sake of simplicity, the argument x(±)
q,q+1 for the Bessel functions has been omitted. Worthwhile to

mention that integration over the entire solid angle (4π sr) of the photoelectron spectrum cancels out the
sideband oscillations as a function of the relative phase of the harmonics. This is a direct consequence of the
opposite symmetry of the final continuum state reached by the two different pathways leading to the same
final energy. The opposite symmetry is the result of the different number of photons involved in the two
pathways.

It follows from equation (13) that the correlation plots S(±)
q−1,q

(
x(±)

q−1,q

)
vs S(±)

q,q+1

(
x(±)

q,q+1

)
are described by

ellipses, whose shape depends on the phase difference Δϕq−1,q,q+1.

Figures 3(a) and (b) present the correlation plots S(±)
8,9 vs S(±)

7,8 for the phase differences Δϕ7,8,9 = π/4
and 3π/4 rad. The shape (eccentricity) of the ellipses gives direct access to the phase difference Δϕ7,8,9. For
the analysis of the experimental data, however, it is more convenient to consider only the oscillating
component of the sidebands, which can be extracted by using the definition:

Pq,q+1 =
S(+)

q,q+1 − S(−)
q,q+1

S(+)
q,q+1 + S(−)

q,q+1

. (15)

Under the approximation (see section 5.3):

Δxq,q+1 =
1

2

[
x(+)

q,q+1 − x(−)
q,q+1

]
≈ 0 (Approximation III), (16)

it follows that the oscillating component can be expressed as:

6
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Figure 4. Dependence on the phase difference Δϕ7,8,9 (a) of the correlation plots P8,9 vs P7,8 and of the corresponding
attosecond pulse train: Δϕ7,8,9 = 0 (b), (j), π/4 (c), (k), π/2 (d), (l), 3π/4 (e), (m), π (f), (n), 5π/4 (g), (o), 3π/2 (h), (p) and
7π/4 (i), (q), respectively. The quantities were simulated using equation (10) and the definition of the oscillating component of
the sideband introduced in equation (15). The energy of the photoelectron corresponds to the photoionization of neon atoms by
the harmonics q = 7, 8, 9 of the seed laser. The intensity of the NIR field was INIR = 8.8 × 1011 W cm−2. Equal amplitudes for the
three harmonics were assumed: F7 = F8 = F9.

Pq,q+1 =
J2

2 − J2
1

J2
2 + J2

1

F2
q − F2

q+1

F2
q + F2

q+1

+
4J1J2

J2
1 + J2

2

FqFq+1

F2
q + F2

q+1

cos
[
ϕq+1 − ϕq + 3ωNIRτ

]
= βq,q+1 + αq,q+1 cos Φ, (17)

where:

βq,q+1 =
J2

2 − J2
1

J2
2 + J2

1

F2
q − F2

q+1

F2
q + F2

q+1

,

αq,q+1 =
4J1J2

J2
1 + J2

2

FqFq+1

F2
q + F2

q+1

,

Φ = ϕq+1 − ϕq + 3ωNIRτ.

(18)

For equal amplitudes of the harmonics (Fq = Fq+1) it follows that:

βq,q+1 = 0, αq,q+1 =
2J1J2

J2
1 + J2

2

. (19)

The correlated plots of the oscillating components Pq,q+1 and Pq−1,q are also described by ellipses
according to the equation:[

Pq−1,q − βq−1,q

]2

α2
q−1,q

+

[
Pq,q+1 − βq,q+1

]2

α2
q,q+1

− 2

[
Pq−1,q − βq−1,q

]
αq−1,q

[
Pq,q+1 − βq,q+1

]
αq,q+1

cos Δϕq−1,q,q+1

= sin2Δϕq−1,q,q+1. (20)

7
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Figure 5. Experimental points (black dots and line) and sinusoidal fit (red line) of ρq−1,q,q+1 vs Δϕq−1,q,q+1 for the
three-harmonic (q = 7, 8, 9) case ((a); delay τ s4) and the four-harmonic (q = 7, 8, 9, 10) case ((b)–(e); delays τ s2 and τ s3). The
experimental points and the corresponding error bars are in black. The error bar for each experimental point was defined as the
standard deviation of the average value of ρq−1,q,q+1 over ten sets of data. The calibration curves as a function of the delay τ s3 were
acquired at the fixed value of τ ∗

s2 = 94 as (see circle in panel (c)). The phase difference Δϕ8,9,10 does not depend on the delay τ s3

and therefore the correlation parameters ρ8,9,10 remain approximately constant (e).

Figure 3(c) presents the correlation plot P8,9 vs P7,8, without any approximations apart from the
assumption of equal amplitudes of the harmonics. The correlation plots based on the sideband intensities
S(±)

q,q+1 (figures 3(a) and (b)) or on the oscillating component Pq,q+1 follow similar curves and they are
described, within our approximation, by similar equations. Therefore the phase information between the
harmonics can be extracted, in principle, from each of the three different correlation plots. However we will
show, in the analysis of the experimental data that the correlation plots based on the oscillating component
are less sensitive to the single-shot fluctuations of the single harmonics and they allow a reliable extraction
of the phase information.

The complete evolution of the correlation plots for the oscillating component of the sideband, with the
associated intensity profile of the attosecond pulse train is shown for the three-harmonic case in figure 4. It
can be observed that similar correlation plots (for example figures 4(c) and (i); 4(d) and (h) and 4(e) and
(g)) correspond to different phases Δϕ7,8,9 and, therefore, to different reconstructed electric fields.
Generally, the phase differences Δϕq−1,q,q+1 = ϕ0 and Δϕq−1,q,q+1 = 2π − ϕ0 are related to the same
correlation plot as shown by equation (20). This ambiguity can be resolved in the experiment by changing
the relative phases between the harmonics by a known amount. In particular, as the sign of the delays (and
therefore of the phases) introduced on the harmonics are known, it is possible to assign unequivocally a
phase difference to each correlation plot.

3.3. Correlation parameter
In the experiment, the photoelectron spectra were measured for a fixed setting of the phase shifters. We
indicate with S(±)

q,q+1(i) (i = 1, 2, 3, . . . , N) the intensity of the sideband S(±)
q,q+1 for the ith-FEL shot. The

intensity of each sideband was obtained by numerical integration of the corresponding peak in the
time-of-flight spectrum. The oscillating component of the sidebands Pq,q+1 was determined according to
equation (15) after subtraction of the background.

The phase information is encoded in the shape of the ellipses. However, an elliptical fit of the correlation
plots Pq−1,q vs Pq,q+1 was problematic, due to the residual single harmonic fluctuations, which lead to
scattered experimental points. In order to evaluate the changes of the shape of the correlation plots for

8
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different phases, we used the correlation coefficient ρq−1,q,q+1 defined as:

ρq−1,q,q+1 =
cov(x, y)

σxσy
=

〈xy〉 − 〈x〉〈y〉√
〈x2〉 − 〈x〉2

√
〈y2〉 − 〈y〉2

, (21)

where x ≡ Pq−1,q(i), y ≡ Pq,q+1(i) and

〈x〉 =
∑N

i=1 x(i)

N
i = 1, 2, 3, . . .N, (22)

where N is the total number of single-shot data. A similar definition was used for 〈y〉. Numerical
simulations (see figure 4) indicate that perfect positive (negative) correlation ρq−1,q,q+1 = +1(−1)
corresponds to the condition Δϕq−1,q,q+1 = 0(π) as shown in figures 4(b) and (f). Correlation coefficient
ρq−1,q,q+1 = 0 indicates that Δϕq−1,q,q+1 = π/2 (3π/2) as shown in figures 4(d) and (h). In general, as
already observed, each value of the correlation coefficient corresponds to two different phase differences
Δϕq−1,q,q+1 = ϕ0 and Δϕq−1,q,q+1 = 2π − ϕ0 (or Δϕq−1,q,q+1 = −ϕ0) (see equation (20)).

4. Experimental results and comparison with theoretical simulations

4.1. Phase calibration procedure
4.1.1. Three-harmonic case
In the case of three harmonics, the temporal structure of the attosecond pulse train depends only on the
phase difference Δϕ7,8,9. In order to assign a phase value to each position of the phase shifter, a scan of the
delay introduced by one phase shifter is acquired. In figure 5(a) we report the variation of the correlation
parameter ρ7,8,9 as a function of the delay τ s4 introduced by the phase shifter PS4. The phase difference
Δϕ7,8,9 changes according to equation (9). The experimental points can be fitted by a sinusoidal function
and the maxima of the fit are assigned to phase difference Δϕ7,8,9 = 2mπ. Using this approach each delay
introduced by the phase shifter is unequivocally associated with a phase difference Δϕ7,8,9.

4.1.2. Four-harmonic case
In the four-harmonic case, the intensity profile depends on two phase differences Δϕ7,8,9 and Δϕ8,9,10. As a
consequence, at least two different phase shifters can be used to control the relative phases: for example PS2

(delay τ s2) and PS3 (delay τ s3) for Δϕ7,8,9, and PS1 (delay τ s1) and PS2 (delay τ s2) for Δϕ8,9,10. In
figures 5(b)–(e) we report the calibration curves for the phase shifters PS2 and PS3. When changing the
delay introduced by PS2, the phase difference Δϕ8,9,10 changes according to equation (8). Similar to the
three-harmonic case, the maxima are assigned to phase differences Δϕ8,9,10 = 2mπ. The changes in τ s2

affect also the phase difference Δϕ7,8,9 according to equation (9).
For the calibration of the delay τ s3, a fixed value of τ s2 was used (τ ∗s2 = 94 as) and the delay introduced

by PS3 was changed. The point corresponding to the value of τ ∗s2 is indicated by a circle in figure 5(c).
Equation (9) again allows us to assign to each delay τ s3 a value for the phase difference Δϕ7,8,9 imposing the
condition that the maxima correspond to Δϕ7,8,9 = 2nπ.

Using this procedure we can assign the phase differences ϕ7,8,9 and ϕ8,9,10 for each combination of delays
introduced by the phase shifters PS2 and PS3. A similar procedure can be followed to calibrate the phase
differences for more than four harmonics.

4.2. NIR-intensity dependence of the elliptical correlation plots
The NIR intensity plays an important role for the observation and the correct reconstruction of the phase
differences Δϕq−1,q,q+1. On one hand the NIR field should be sufficiently intense to overcome the
single-shot fluctuations of the single harmonics, which cause the scattering of the experimental points in
the correlation plots, thus preventing the observation of phase-dependent correlation plots for very low NIR
intensity. On the other hand the NIR field should not be so intense as to introduce n � 4 transitions, which
would invalidate approximation II (see equation (12)), thus affecting the phase reconstruction. These two
conditions set a NIR intensity interval for the experiment.

The area of an ellipse is given by S = πab, where a and b indicate the minor and major axis of the
ellipse. For the correlation plots, we consider the approximation αq−1,q � αq,q,+1 = α and the area of the
plots is then given by:

A = πα2| sinΔϕq−1,q,q+1|. (23)

The area of the ellipse depends on the phase Δϕq−1,q,q+1 between the harmonics and it reduces to zero
in the case of perfect constructive (Δϕq−1,q,q+1 = 0) or destructive (Δϕq−1,q,q+1 = −π) synchronization.

9
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Figure 6. Simulated correlation plots of the oscillating components of the sidebands P8,9 and P7,8 for increasing amplitudes of
the NIR fields (in atomic units) FNIR = 0.003 a.u. (a), (f), 0.004 a.u. (b), (g), 0.005 a.u. (c), (h), 0.006 a.u. (d), (l), 0.007 a.u. (e),
(j) for the phase differences Δϕ7,8,9 = π/2 (a)–(e) and Δϕ7,8,9 = π (f)–(j).

Figure 7. Experimental correlation plots of the oscillating components of the sidebands P8,9 and P7,8 for increasing amplitudes of
the NIR fields for the phase differences Δϕ7,8,9 = 1.79 ± 0.03 (a)–(e), Δϕ7,8,9 = 3.3 ± 0.2 (f)–(j) and NIR intensities
7.5 × 1011 W cm−2 (a), (f), 1.1 × 1012 W cm−2 (b), (g), 1.3 × 1012 W cm−2 (c), (h), 1.45 × 1012 W cm−2 (d), (i), 1.5 × 1012 W
cm−2 (e), (j). The error bars of the phase differences Δϕ7,8,9 were estimated using the procedure followed in reference [22].

Assuming that the harmonics also present equal amplitudes and neglecting the variation of the
photoelectron energies for two consecutive sidebands, α is given by equation (19). The factor α depends on
the intensity of the NIR field and on the photoelectron energy. In figures 6(a)–(e) and (f)–(j) we report the
simulated correlation plots corresponding to Δϕq−1,q,q+1 = 0 and Δϕq−1,q,q+1 = π/2 for increasing NIR
intensities (see caption), respectively.

The expected increase in the area of the ellipse with intensity was observed in the experiment as shown
in figures 7(a)–(e) and (f)–(j), which reports the evolution of the correlation plots for five different
intensities of the NIR field with a maximum NIR intensity of INIR = 1.5 × 1012 W cm−2 (figures 7(e) and
(j)). It can be observed that only from a NIR intensity INIR = 1.3 × 1012 W cm−2 (figure 7(c)) the
characteristic elliptical shape induced by the different Δϕ7,8,9 can be distinguished.

4.3. Correlation plots of the sideband intensities S(±)
q−1,q − S(±)

q,q+1 vs correlation plots of the oscillating
component of the sideband Pq−1,q − Pq,q+1

We now consider the effect of single-shot fluctuations of the individual harmonics on the correlations plots.
We will show that plots based on the oscillating components of the sidebands are less sensitive to harmonic
intensity fluctuations than those based on the sidebands themselves, thus enabling a more reliable
reconstruction of the phase differences Δϕq−1,q,q+1. The sideband intensities S(±)

q,q+1 for small variations of
the amplitude of the single harmonic ΔFq−1,ΔFq,ΔFq+1 are described by the relations:

S(−)
q,q+1[Fq +ΔFq, Fq+1 +ΔFq+1] = S(−)

q,q+1[Fq, Fq+1] +
1

2
FqΔFqJ2

1 +
1

2
Fq+1ΔFq+1J2

2

− 1

2
(Fq+1ΔFq + FqΔFq+1)J1J2 cos Φ, (24)
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Figure 8. Simulated correlation plots for the sidebands S(−)
8,9 vs S(−)

7,8 (a) and S(+)
8,9 vs S(+)

7,8 (b). Simulated correlation plots for the
oscillating components of the sidebands P8,9 vs P7,8 (c). Each ellipse in panel (a)–(c) is generated by using the amplitude values
(Fq’s) following Gaussian distribution with standard deviation (ΔFq) 4.5% of the amplitude (F7 = F8 = F9) in an incremental
step of 0.5%.

Figure 9. Experimental correlation plots for the sidebands S(−)
8,9 vs S(−)

7,8 (a) and S(+)
8,9 vs S(+)

7,8 (b). Experimental correlation plots
for the oscillating components of the sidebands P8,9 vs P7,8 (c). The intensity of the NIR pulse for the data presented was
estimated to be INIR = 1.5 × 1012 W cm−2.

S(+)
q,q+1[Fq +ΔFq, Fq+1 +ΔFq+1] = S(+)

q,q+1[Fq, Fq+1] +
1

2
FqΔFqJ2

2 +
1

2
Fq+1ΔFq+1J2

1

+
1

2
(Fq+1ΔFq + FqΔFq+1)J1J2 cos Φ, (25)

where Φ is defined by equation (18). The effect of a change of the harmonic amplitudes ΔFq and ΔFq+1 on
the sideband intensities depends on the phase Φ. This effect is visible in figure 8, which displays the
simulated correlation plots based on the sidebands S(−)

8,9 − S(−)
7,8 (a) and S(+)

8,9 − S(+)
7,8 (b) for Δϕ7,8,9 = π/8

and different variations ΔF7,ΔF8,ΔF9 (see caption) of the single harmonic amplitudes, according to
equations (24) and (25). It is clear that the variations are larger for large values of the sideband signal, while
the fluctuations are reduced for small sideband intensities (closer to the origin). Using the oscillating
component of the sideband Pq,q+1 and expansion similar to that of equations (24) and (25), we obtain from
equation (17):

Pq,q+1[Fq +ΔFq, Fq+1 +ΔFq+1] = Pq,q+1[Fq, Fq+1] + 4
J2

2 − J2
1

J2
2 + J2

1

(
FqFq+1

F2
q + F2

q+1

)2 [
ΔFq

Fq
− ΔFq+1

Fq+1

]

+ 4
J1J2

J2
1 + J2

2

cos Φ
FqFq+1(F2

q − F2
q+1)(

F2
q + F2

q+1

)2

[
ΔFq

Fq
− ΔFq+1

Fq+1

]
. (26)

In particular in the case Fq = Fq+1 the expression reduces to:

Pq,q+1[Fq +ΔFq, Fq+1 +ΔFq+1] = αq,q+1 cos(Φ) +
J2

2 − J2
1

J2
2 + J2

1

[
ΔFq −ΔFq+1

]
Fq

. (27)

Under these conditions a variation of the harmonic intensity leads only to a shift of the value of the
parameter Pq−1,q, independent of the phase Φ, as shown in figure 8(c). Moreover, in the case of the
oscillating component Pq,q+1 the effect cancels out for equal relative variations of the harmonic amplitudes.
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Figure 10. Approximations I–ll-III applied for the derivation of equation (17).

The different qualitative dependence of the correlation plots on the harmonic amplitude fluctuations
can be observed in the experimental data presented in figure 9. For the correlation plots based on the
sideband intensities figures 9(a) and (b), the elliptical shape is barely visible and the plots present maxima
closer to the origin, where the spread of the single-shot experimental points is smaller. In figure 9(c), the
elliptical and symmetrical shape is clearly visible and also the central minimum appears. As a result, the
analysis of the experimental data using the oscillating component of the sideband allows one to reduce the
effect of the harmonic intensity fluctuations.

5. Analysis of the approximations

According to equations (17) and (20), the correlation plots are described by ellipses and information on the
phase difference Δϕq−1,q,q+1 is encoded in the shape of the ellipse. The derivation of equation (17) is based
on a few assumptions (as schematically shown in figure 10) that need to be analyzed to evaluate the validity
of the approach. The different assumptions are shown schematically in figure 10. In the following section,
we will analyze the different approximations, using the strong-field-model, deriving, in particular, the
maximum NIR intensities for which the approximations are valid.

5.1. Approximation I: role of A2
NIR ≈ 0

We consider the first approximation by neglecting the term A2
NIR(t′′, τ) in the evaluation of the integral

equation (10), which leads to the expression:

b(p, τ) � i

∫ +∞

−∞
dt′EXUV(t′) exp

{
−i

∫ +∞

t′
dt′′

[
1

2
p2 + p · ANIR(t′′, τ)

]
+ iIpt′

}
, (28)

where we also assumed that the dipole matrix element d
[

p + ANIR(t′, τ)
]

is constant. The results are shown
in figure 11 for increasing NIR fields. We can observe that at low intensity of the NIR the agreement
between the two curves with (blue stars) and without (red dots) the term A2

NIR is excellent. Also for
intensities higher than FNIR = 0.01 a.u. the shape of the correlated sideband parameter is very similar, even
though there is a small offset, which does not appreciably affect the evaluation of the correlation coefficient
defined in equation (21). The conclusion is that, at least up to FNIR ≈ 0.01 a.u., the term A2

NIR can be safely
neglected.

5.2. Approximation II: multi-NIR photon transitions
The integral of equation (28) can be evaluated using a Bessel expansion of the exponential term containing
p · ANIR(t′′, τ ). For low NIR intensities, the assumption that only one and two-NIR-photon transitions play
a role in the appearance of the sidebands is well justified. For higher intensities, however, also higher-order
NIR transitions start to play a role. We analyze the contribution of these multi-NIR photon (n > 2)

12
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Figure 11. Correlation plots of the oscillating components P7,8 and P8,9 using the integral with (equation (10), blue stars) and
without (equation (28), red dots) A2

NIR terms, the Bessel expansion with one and two NIR photon transitions (equations (13),
(14) and (15), green line), and up to five NIR photon transitions (equations (29) and (15), black triangles) for different
amplitudes of the NIR field (atomic units): FNIR = 0.001 a.u. (a), 0.002 a.u. (b), 0.004 a.u. (c), 0.006 a.u. (d), 0.008 a.u. (e), 0.01
a.u. (f). In panel (a) an inset of the zoomed up portion of a small region is presented to show the overlapping curves.

transitions, by comparing the expansions:

S(+)
q,q+1(x(+)

q,q+1) =
1

4

{
J2

5 F2
q−1 + J2

2 F2
q + J2

1 F2
q+1 − 2Fq−1FqJ2J5 cos[3ωNIRτ + ϕq − ϕq−1]

− 2Fq−1Fq+1J5J1 cos[6ωNIRτ + ϕq+1 − ϕq−1]

+ 2FqFq+1J2J1 cos[3ωNIR + ϕq+1 − ϕq]
}

, (29)

S(−)
q,q+1(x(−)

q,q+1) =
1

4

[
J2

4 F2
q−1 + J2

1 F2
q + J2

2 F2
q+1 − 2Fq−1FqJ4J1 cos[3ωNIRτ + ϕq − ϕq−1]

+ 2Fq−1Fq+1J4J2 cos[6ωNIRτ + ϕq+1 − ϕq−1]

− 2FqFq+1J1J2 cos[3ωNIR + ϕq+1 − ϕq], (30)

which were obtained by considering terms up to the fifth order (n = 5) in the expansion of equation (11).
Figure 11 presents the comparison between the correlation plots of the oscillating components of the
sidebands determined using the two Bessel-based expansions with terms up to the second (green line) and
fifth order (black triangles). It is evident that already starting from FNIR = 0.008 a.u. the approximation
with only one and two-NIR-photon transitions is poorly fulfilled and the inclusion of higher terms in the
Bessel-based expansion is important in order to obtain a good approximation.

This conclusion is confirmed by analysing the contribution to the sideband intensities and to the
oscillating component Pq,q+1 due to the different multiphoton terms. For this purpose we introduce the
following functions:

γ± =
1

4

[
J2

5 (x+) ± J2
4 (x−)

]
F2

q−1,

μ± =
1

4

{[
J2

2 (x+) ± J2
1 (x−)

]
F2

q +
[
J2

1 (x+) ± J2
2 (x−)

]
F2

q+1

}
,

δ± =
1

2

[
J2(x+)J5(x+) ± J4(x−)J1(x−)

]
Fq−1Fq,

θ± =
1

2

[
J5(x+)J1(x+) ± J4(x−)J2(x−)

]
Fq−1Fq+1,

ψ± =
1

2

[
J2(x+)J1(x+) ± J1(x−)J2(x−)

]
FqFq+1.

(31)
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Figure 12. Evolution of the functions μ± (black), ψ± (red), δ± (blue), θ± (green), γ± (magenta) defined in equation (31).
Functions with + (−)-superscript are shown by full (dotted) lines. FNIR are expressed in atomic units.

where x± = x(±)
q,q+1 are the arguments of the Bessel function. With these definitions, we can express the

numerator and denominator of equation (15) defining the oscillating component Pq,q,+1:

S(+)
q,q+1 ± S(−)

q,q+1 = γ± + μ± − δ± cos(3ωNIRτ + ϕq − ϕq−1)

− θ∓ cos(6ωNIRτ + ϕq+1 − ϕq−1) + ψ∓ cos(3ωNIRτ + ϕq+1 − ϕq). (32)

The different functions are shown in figure 12 as a function of the field of the NIR pulse (FNIR). We observe
that only two terms (ψ+ and μ+) dominate up to a field amplitude FNIR ∼ 0.006 a.u., while the other two
terms (ψ− and μ−) derived from one and two-photon transitions are negligible. For higher field strengths,
the additional multi-NIR photon contributions (up to 4 and 5 photons) δ±, γ± and θ± start playing a role.
For fields as high as FNIR ∼ 0.011–0.012 a.u., the different contributions are comparable and the correlation
plots present a complex pattern (not shown). At these high field strengths the correlation plots can no
longer be described by ellipses.

5.3. Approximation III: x(−)
q,q+1 � x(+)

q,q+1 → Δxq,q+1 = 0
The last approximation used to derive the elliptical shape of the correlated sideband parameter is the
assumption that the difference between the x-argument of the Bessel functions for consecutive sidebands is
negligible:

Δxq,q+1 = Δx =
x(+)

q,q+1 − x(−)
q,q+1

2
= 0.

We can perform a first order expansion around Δxq,q+1 = 0 to evaluate the effect of small variations of this
parameter on the correlation plots. We define:

x0 =
x(+)

q,q+1 + x(−)
q,q+1

2
,

and therefore:
x(+)

q,q+1 = x0 +Δx, x(−)
q,q+1 = x0 −Δx.

Starting from the equations (13) and (15), the expression of the oscillating component of the sideband
in the case of harmonics with equal amplitudes Fq = Fq+1 becomes:

Pq,q+1(x0,Δx) = Pq,q+1(x0,Δx = 0)

⎧⎨
⎩1 −Δx

2
[

J2
1 (x0) − J2

2 (x0) − 1
x0

J1(x0)J2(x0)
]

[
J2

1 (x0) + J2
2 (x0)

] cos Φ

⎫⎬
⎭

+Δx
2
[
J2

1 (x0) − 2J2
2 (x0)

]
x0

[
J2

1 (x0) + J2
2 (x0)

] . (33)
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Figure 13. Correlation plots of the oscillating components P7,8 and P8,9 using the Bessel expansion with one and
two-NIR-photon transitions (equations (13)–(15), black line), the approximation Δx = 0 (equation (17), red), and the
approximation taking into account the first order correction in Δx (equation (33), blue) for different amplitudes of the NIR field
(in atomic units): FNIR = 0.001 a.u. (a), 0.002 a.u. (b), 0.004 a.u. (c), 0.006 a.u. (d), 0.008 a.u. (e), 0.01 a.u. (f). Note the different
scale limits of panels (a) and (b) versus panels (c)–(f).

Figure 14. Correlation parameter ρ7,8,9 calculated from equation (21) for different intensities of the NIR pulse corresponding to
FNIR (atomic units) values from 0.001 to 0.01 a.u. The correlation curves for different FNIR amplitudes in the plot were vertically
shifted for visual clarity.

Figure 13 presents the comparison between the sideband correlated plot obtained for the approximation
based on the Bessel expansion with one and two-NIR-photon transitions (black line), the approximation
Δx = 0 (red), and the approximation taking the first order correction in Δx (blue). We can observe a very
good agreement between the three curves for intensities FNIR between 0.004 and 0.008 a.u.. At lower and
higher NIR intensities, the importance of the first terms in Δx is more evident.
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5.4. Intensity dependence of the correlation parameter ρq−1,q,q+1

Finally we evaluate the dependence of the correlation parameter ρq−1,q,q+1 derived for different NIR
intensities from the sideband oscillations obtained from the complete integral (equation (10)). Figure 14
reports the correlation as a function of the phase difference Δϕq−1,q,q+1 for different intensities of the NIR
field. It is evident that the evolution of the correlation parameter is almost unaffected up to very large
intensities. Even for the highest intensities, however, maximum positive (negative) correlation still
corresponds to the condition Δϕq−1,q,q+1 = 0 (Δϕq−1,q,q+1 = π), as shown in figure 14.

The conclusion is that the correlation parameter is a very robust parameter, which maintains its validity
for the reconstruction of the phase differences Δϕq−1,q,q+1 even for those intensities for which the
correlation plots start deviating significantly from the ellipses described by equation (20).

6. Conclusions

We investigated in detail the temporal characterization of trains of attosecond pulses generated at the seeded
FEL FERMI. The analysis of the approximations indicates that the method based on the correlation analysis
of the single-shot fluctuations of the sidebands can be applied over a large intensity range of the NIR field.
The lower limit of this range is imposed by the single-shot detection of the sideband photoelectron signal
and by the shot-to-shot fluctuations of the intensity of the single harmonics. The upper limit
(FNIR ≈ 0.008–0.009 a.u.) is determined by the appearance of multi-NIR photon transitions (up to four
and five-photon transitions). Nevertheless, even in a certain intensity range in which these transitions
cannot be neglected the calibration procedure for the assignment of the phase difference of each setting of
the phase shifters turns out to be reliable. Using this method, the complete phase and amplitude shaping of
attosecond waveforms in time was demonstrated [22]. This approach outperforms other experimental
approaches based on HHG sources and exploiting the dispersion of metallic filters [29, 30], the use of
chirped mirrors [31], and the manipulation of the pulse structure and time-dependent polarization of the
driving field [32–34]. The demonstration of sub-femtosecond pulses at FELs opens up new perspectives for
the implementation of XUV-pump–XUV-probe approaches in the attosecond range [35, 36] and
time-resolved coherent-control experiments in the XUV spectral range.
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