411 research outputs found

    Dauer geringfĂŒgiger BeschĂ€ftigungen (Duration of “marginal“ part-time jobs)

    Get PDF
    "On the basis of both labour market policy and social policy considerations, the development and composition of the group of 'marginal' part-time workers is discussed again and again. Not only the volume of these employment relationships is important for assessing the relevance of marginal part-time employment, but also their particular duration. After summarising the results of available studies on the number of marginal part-time workers this report therefore uses the data of the socio-economic panel to examine the distribution of duration as well as the question as to whether there are group differences here. It was revealed that people with marginal second jobs and those responsible for managing a household constitute the two largest groups, followed by school pupils and students, unemployed people and finally retired people as the smallest group. In particular the group of married women and women with children under the age of 16 stands out due to significantly longer spells of employment in marginal part-time jobs. In addition to this it became clear that there is a need for research into employment prospects following marginal part-time work." (Author's abstract, IAB-Doku) ((en))geringfĂŒgige BeschĂ€ftigung - Dauer, soziale Gruppe, geringfĂŒgige BeschĂ€ftigung - Determinanten

    Early Pleistocene Obliquity‐Scale pCO2 Variability at ~1.5 Million Years Ago

    Full text link
    In the early Pleistocene, global temperature cycles predominantly varied with ~41‐kyr (obliquity‐scale) periodicity. Atmospheric greenhouse gas concentrations likely played a role in these climate cycles; marine sediments provide an indirect geochemical means to estimate early Pleistocene CO2. Here we present a boron isotope‐based record of continuous high‐resolution surface ocean pH and inferred atmospheric CO2 changes. Our results show that, within a window of time in the early Pleistocene (1.38–1.54 Ma), pCO2 varied with obliquity, confirming that, analogous to late Pleistocene conditions, the carbon cycle and climate covaried at ~1.5 Ma. Pairing the reconstructed early Pleistocene pCO2 amplitude (92 ± 13 Όatm) with a comparably smaller global surface temperature glacial/interglacial amplitude (3.0 ± 0.5 K) yields a surface temperature change to CO2 radiative forcing ratio of S[CO2]~0.75 (±0.5) °C−1·W−1·m−2, as compared to the late Pleistocene S[CO2] value of ~1.75 (±0.6) °C−1·W−1·m−2. This direct comparison of pCO2 and temperature implicitly incorporates the large ice sheet forcing as an internal feedback and is not directly applicable to future warming. We evaluate this result with a simple climate model and show that the presumably thinner, though extensive, northern hemisphere ice sheets would increase surface temperature sensitivity to radiative forcing. Thus, the mechanism to dampen actual temperature variability in the early Pleistocene more likely lies with Southern Ocean circulation dynamics or antiphase hemispheric forcing. We also compile this new carbon dioxide record with published Plio‐Pleistocene ÎŽ11B records using consistent boundary conditions and explore potential reasons for the discrepancy between Pliocene pCO2 based on different planktic foraminifera.Key PointsEarly Pleistocene pCO2 roughly varied with obliquity cyclesInterglacial pCO2 was similar in the early and late Pleistocene; glacial pCO2 declined over the mid‐Pleistocene transitionDiscrepancies between ÎŽ11B values and corresponding pCO2 estimates from G. ruber and T. sacculifer are observed and may indicate evolving vital effectsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/1/palo20675-sup-0004-2018PA003349-S03.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/2/palo20675.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/3/palo20675-sup-0002-2018PA003349-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/4/palo20675_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/5/palo20675-sup-0005-2018PA003349-S04.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/6/palo20675-sup-0003-2018PA003349-S02.pd

    Cities lead on climate change

    Get PDF

    Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates

    Get PDF
    Formation of deep water in the high-latitude North Atlantic is important for the global meridional ocean circulation, and its variability in the past may have played an important role in regional and global climate change. Here we study ocean circulation associated with the last (de)glacial period, using water-column radiocarbon age reconstructions in the Faroe-Shetland Channel, southeastern Norwegian Sea, and from the Iceland Basin, central North Atlantic. The presence of tephra layer Faroe Marine Ash Zone II, dated to ~26.7 ka, enables us to determine that the middepth (1179 m water depth) and shallow subsurface reservoir ages were ~1500 and 1100 14C years, respectively, older during the late glacial period compared to modern, suggesting substantial suppression of the overturning circulation in the Nordic Seas. During the late Last Glacial Maximum and the onset of deglaciation (~20–18 ka), Nordic Seas overflow was weak but active. During the early deglaciation (~17.5–14.5 ka), our data reveal large differences between 14C ventilation ages that are derived from dating different benthic foraminiferal species: Pyrgo and other miliolid species yield ventilation ages >6000 14C years, while all other species reveal ventilation ages <2000 14C years. These data either suggest subcentennial, regional, circulation changes or that miliolid-based 14C ages are biased due to taphonomic or vital processes. Implications of each interpretation are discussed. Regardless of this “enigma,” the onset of the Bþlling-Allerþd interstadial (14.5 ka) is clearly marked by an increase in middepth Nordic Seas ventilation and the renewal of a stronger overflow

    Ein Web-basierter Computergraphik-Kurs im Baukastensystem

    Get PDF
    Aus der Zusammenfassung: 'Dieses Beispiel eines interaktiven Online-Kurses zeigt, wie virtuelle Experimente die traditionellen Lehrmethoden im Bereich der Computergraphik sinnvoll ergĂ€nzen. Das Zusammenspiel von Java und dem World-Wide-Web erlaubt die einheitliche Integration von hypertextuellen Vorlesungstexten, interaktiven Visualisierungen, virtuellen Experimenten, ProgrammierĂŒbungen und Programmierschnittstellen in eine unbeschrĂ€nkt nutzbare virtuelle Lernumgebung

    Boron isotope ratio determination in carbonates /via/ LA-MC-ICP-MS using soda-lime glass standards as reference material

    Get PDF
    A new in situ method using LA-MC-ICP-MS (193 nm excimer laser) for the determination of stable boron isotope ratios (ÎŽ11B) in carbonates was developed. Data were acquired via a standard sample standard bracketing procedure typically providing a reproducibility of 0.5‰ (SD) for samples containing 35 ppm of boron. A single ablation interval consumed about 5 ”g of sample corresponding to about 0.2 ng of boron. The major finding was the similar instrumental fractionation behaviour of carbonates, soda-lime glass and sea salt with respect to boron isotopes. As no matrix induced offset was detectable between these distinct materials we propose the use of NIST glasses as internal standards for boron isotope ratio measurements via LA-MC-ICP-MS. This finding overcomes the problem of a missing matrix matched carbonate standard for in situ boron isotope studies. As a first application a set of coral samples from a culturing experiment was analysed. ÎŽ11B values range from 19.5 to 25‰ depending on the pH of the water used in the particular treatment. This is in good agreement with the results of earlier studies

    The effects of changing climate on faunal depth distributions determine winners and losers

    No full text
    Changing climate is predicted to impact all depths of the global oceans, yet projections of range shifts in marine faunal distributions in response to changing climate seldom evaluate potential shifts in depth distribution. Marine ectotherms’ thermal tolerance is limited by their ability to maintain aerobic metabolism (oxygen- and capacity-limited tolerance), and is functionally associated with their hypoxia tolerance. Shallow-water (&lt;200 m depth) marine invertebrates and fishes demonstrate limited tolerance of increasing hydrostatic pressure (pressure exerted by the overlying mass of water), and hyperbaric (increased pressure) tolerance is proposed to depend on the ability to maintain aerobic metabolism, too. Here, we report significant correlation between the hypoxia thresholds and the hyperbaric thresholds of taxonomic groups of shallow-water fauna, suggesting that pressure tolerance is indeed oxygen-limited. Consequently, it appears that the combined effects of temperature, pressure, and oxygen concentration constrain the fundamental ecological niches (FENs) of marine invertebrates and fishes. Including depth in a conceptual model of oxygen- and capacity-limited FENs’ responses to ocean warming and deoxygenation confirms previous predictions made based solely on consideration of the latitudinal effects of ocean warming (e.g. Cheung et al., 2009), that polar taxa are most vulnerable to the effects of climate change, with Arctic fauna experiencing the greatest FEN contraction. In contrast, the inclusion of depth in the conceptual model reveals for the first time that temperate fauna as well as tropical fauna may experience substantial FEN expansion with ocean warming and deoxygenation, rather than FEN maintenance or contraction suggested by solely considering latitudinal range shifts

    Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Get PDF
    Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Angström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na andMg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca2+, previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic template

    Cities lead on climate change

    Full text link

    Redox conditions in the Late Cretaceous Chalk Sea: the possible use of cerium anomalies as palaeoredox indicators in the Cenomanian and Turonian Chalk of England

    Get PDF
    The cerium anomalies preserved in the Chalk have been investigated as possible palaeoredox indicators of the Late Cretaceous Sea and its sediment. This has been based upon over a hundred new rare earth element analyses of selected samples and grain size fractions from the Chalk. Particular attention has been given to the methodology of differentiating between the cerium anomalies preserved in the bioclastic calcite and those in carbonate-fluorapatite preserved in the acetic acid insoluble residues of chalks. Variations in the cerium anomaly of different particle size fractions of uncemented chalks suggest that fractionation of rare earth elements between the Chalk's seawater and the various organisms that contributed skeletal material to the bioclastic calcite of the Chalk may have occurred. Post-depositional processes of calcite cementation and late diagenetic sulphidisation have had no apparent effect on the cerium anomaly of the acetic acid insoluble residues. The cerium anomalies associated with the acetic acid insoluble residues from (1) an alternating sequence of chalks and marls from Ballard Cliff (Dorset, UK) typical of Milankovitch cyclicity show a marked diagenetic pattern, whereas those from (2) non-volcanic and volcanic marls display a pattern that is best explained by the variations in the availability of phosphorus and the timing of argillisation of volcanic glass during diagenesis. The general conclusion is drawn that the cerium anomalies preserved in the Chalk can provide an insight into the changing palaeoredox conditions in the Late Cretaceous Sea as well as in the pore fluids of its sediments
    • 

    corecore