194 research outputs found

    c.207C>G mutation in sepiapterin reductase causes autosomal dominant dopa-responsive dystonia

    Get PDF
    Objective: To elucidate the genetic cause of an Egyptian family with dopa-responsive dystonia (DRD), a childhood-onset dystonia, responding therapeutically to levodopa, which is caused by mutations in various genes. Methods: Rare variants in all coding exons of GCH1 were excluded by Sanger sequencing. Exome sequencing was applied for 1 unaffected and 2 affected family members. To investigate the functional consequences of detected genetic variants, urinary sepiapterin concentrations were determined by high-performance liquid chromatography. Results: A heterozygous rare nonsynonymous variant in exon 1 of sepiapterin reductase (SPR, c.207C>G, p.Asp69Glu) was found in all affected family members. Urinary concentrations of sepiapterin were above the standard of normal controls in most SPR mutation carriers, suggesting functional biochemical consequences of the mutation. Variant filtering of all genes involved in the tetrahydrobiopterin pathway, required for levodopa synthesis, revealed an additional common variant in dihydrofolate reductase (DHFR, rs70991108). The presence of both variants was significantly stronger associated with the biochemical abnormality and the clinical disease state as opposed to 1 variant only. Conclusions: The rare SPR mutation can cause autosomal dominant DRD with incomplete penetrance. The common DHFR variant might have synergistic effects on production of tetrahydrobiopterin and levodopa, thereby increasing penetrance

    Automatic covariance pattern analysis outperforms visual reading of 18 F‐fluorodeoxyglucose‐positron emission tomography (FDG‐PET) in variant progressive supranuclear palsy

    Get PDF
    Background: To date, studies on positron emission tomography (PET) with F-18-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). Objectives: To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. Methods: This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. Results: Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. Conclusions: Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. (C) 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes

    Get PDF
    Importance: The entry of artificial intelligence into medicine is pending. Several methods have been used for the predictions of structured neuroimaging data, yet nobody compared them in this context. Objective: Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging. Design, setting, and participants: Atlas-based volumetry was performed on multi-centric T1-weighted MRI data from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes. Interventions: N.A. Main outcomes and measures: Cohen's kappa, accuracy, and F1-score to assess model performance. Results: Overall, the neural network produced both the best performance measures and the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather weak atrophy. Conclusions and relevance: Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best

    Hyperphosphorylated tau in young and middle-aged subjects

    Get PDF
    The brain tissue obtained from ninety-five cognitively unimpaired subjects, with ages ranging from 22 to 50 years upon death, were immunohistochemically assessed for neurodegenerative changes, i.e., hyperphosphorylated tau (HPτ) and ÎČ-amyloid (AÎČ) pathology in predilection neuroanatomical areas. HPτ pathology was observed in the transentorhinal cortex and/or the locus coeruleus (LC) in 33% of the subjects, without any obvious risk factors known to alter the microtubule-associated protein. HPτ pathology was noted in the LC in 25 out of 83 subjects (30%), lacking concomitant cortical AÎČ or transentorhinal HPτ pathology. This observation was present even when assessing only one routine section of 7 Όm thickness. The recent suggestion of prion-like propagation of neurodegeneration and the finding of neurodegeneration being quite common in middle-aged persons is alarming. It is noteworthy, however, that a substantial number of neurologically unimpaired subjects even at a very old age display only sparse to modest extent of neurodegenerative pathology. Thus, only a subset of subjects with neurodegenerative changes early in life seem to progress to a symptomatic disease with ageing. This observation brings forth the notion that other, yet unknown modifying factors influence the progression of degeneration that leads to a symptomatic disorder. The known association between alterations in the LC and mood disorders, and the finding of the LC being frequently affected with HPτ pathology suggest that clinicopathological studies on young subjects both with or without mood disorders are warranted

    CXCR4 involvement in neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases

    Identification of a novel functional deletion variant in the 5'-UTR of the DJ-1 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DJ-1 forms part of the neuronal cellular defence mechanism against oxidative insults, due to its ability to undergo self-oxidation. Oxidative stress has been implicated in the pathogenesis of central nervous system damage in different neurodegenerative disorders including Alzheimer's disease and Parkinson's disease (PD). Various mutations in the <it>DJ-1 </it>(<it>PARK7</it>) gene have been shown to cause the autosomal recessive form of PD. In the present study South African PD patients were screened for mutations in <it>DJ-1 </it>and we aimed to investigate the functional significance of a novel 16 bp deletion variant identified in one patient.</p> <p>Methods</p> <p>The possible effect of the deletion on promoter activity was investigated using a Dual-Luciferase Reporter assay. The <it>DJ-1 </it>5'-UTR region containing the sequence flanking the 16 bp deletion was cloned into a pGL4.10-Basic luciferase-reporter vector and transfected into HEK293 and BE(2)-M17 neuroblastoma cells. Promoter activity under hydrogen peroxide-induced oxidative stress conditions was also investigated. Computational (<it>in silico</it>) <it>cis</it>-regulatory analysis of <it>DJ-1 </it>promoter sequence was performed using the transcription factor-binding site database, TRANSFAC via the PATCHℱ and rVISTA platforms.</p> <p>Results</p> <p>A novel 16 bp deletion variant (g.-6_+10del) was identified in <it>DJ-1 </it>which spans the transcription start site and is situated 93 bp 3' from a Sp1 site. The deletion caused a reduction in luciferase activity of approximately 47% in HEK293 cells and 60% in BE(2)-M17 cells compared to the wild-type (<it>P </it>< 0.0001), indicating the importance of the 16 bp sequence in transcription regulation. The activity of both constructs was up-regulated during oxidative stress. Bioinformatic analysis revealed putative binding sites for three transcription factors AhR, ARNT, HIF-1 within the 16 bp sequence. The frequency of the g.-6_+10del variant was determined to be 0.7% in South African PD patients (2 heterozygotes in 148 individuals).</p> <p>Conclusion</p> <p>This is the first report of a functional <it>DJ-1 </it>promoter variant, which has the potential to influence transcript stability or translation efficiency. Further work is necessary to determine the extent to which the g.-6_+10del variant affects the normal function of the <it>DJ-1 </it>promoter and whether this variant confers a risk for PD.</p

    Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy

    Get PDF
    CurePSP Foundation, the Peebler PSP Research Foundation, and National Institutes on Health (NIH) grants R37 AG 11762, R01 PAS-03-092, P50 NS72187, P01 AG17216 [National Institute on Aging(NIA)/NIH], MH057881 and MH077930 [National Institute of Mental Health (NIMH)]. Work was also supported in part by the NIA Intramural Research Program, the German National Genome Research Network (01GS08136-4) and the Deutsche Forschungsgemeinschaft (HO 2402/6-1), Prinses Beatrix Fonds (JCvS, 01–0128), the Reta Lila Weston Trust and the UK Medical Research Council (RdS: G0501560). The Newcastle Brain Tissue Resource provided tissue and is funded in part by a grant from the UK Medical Research Council (G0400074), by the Newcastle NIHR Biomedical Research Centre in Ageing and Age Related Diseases to the Newcastle upon Tyne Hospitals NHS Foundation Trust, and by a grant from the Alzheimer’s Society and Alzheimer’s Research Trust as part of the Brains for Dementia Resarch Project. We acknowledge the contribution of many tissue samples from the Harvard Brain Tissue Resource Center. We also acknowledge the 'Human Genetic Bank of Patients affected by Parkinson Disease and parkinsonism' (http://www.parkinson.it/dnabank.html) of the Telethon Genetic Biobank Network, supported by TELETHON Italy (project n. GTB07001) and by Fondazione Grigioni per il Morbo di Parkinson. The University of Toronto sample collection was supported by grants from Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research. Brain-Net-Germany is supported by BMBF (01GI0505). RdS, AJL and JAH are funded by the Reta Lila Weston Trust and the PSP (Europe) Association. RdS is funded by the UK Medical Research Council (Grant G0501560) and Cure PSP+. ZKW is partially supported by the NIH/NINDS 1RC2NS070276, NS057567, P50NS072187, Mayo Clinic Florida (MCF)Research Committee CR programs (MCF #90052030 and MCF #90052030), and the gift from Carl Edward Bolch, Jr., and Susan Bass Bolch (MCF #90052031/PAU #90052). The Mayo Clinic College of Medicine would like to acknowledge Matt Baker, Richard Crook, Mariely DeJesus-Hernandez and Nicola Rutherford for their preparation of samples. PP was supported by a grant from the Government of Navarra ("Ayudas para la RealizaciĂłn de Proyectos de InvestigaciĂłn" 2006–2007) and acknowledges the "Iberian Atypical Parkinsonism Study Group Researchers", i.e. Maria A. Pastor, Maria R. Luquin, Mario Riverol, Jose A. Obeso and Maria C Rodriguez-Oroz (Department of Neurology, ClĂ­nica Universitaria de Navarra, University of Navarra, Pamplona, Spain), Marta Blazquez (Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Adolfo Lopez de Munain, Begoña Indakoetxea, Javier Olaskoaga, Javier Ruiz, JosĂ© FĂ©lix MartĂ­ MassĂł (Servicio de NeurologĂ­a, Hospital Donostia, San SebastiĂĄn, Spain), Victoria Alvarez (Genetics Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Teresa Tuñon (Banco de Tejidos Neurologicos, CIBERNED, Hospital de Navarra, Navarra, Spain), Fermin Moreno (Servicio de NeurologĂ­a, Hospital Ntra. Sra. de la Antigua, Zumarraga, Gipuzkoa, Spain), Ainhoa Alzualde (NeurogenĂ©tics Department, Hospital Donostia, San SebastiĂĄn, Spain)

    Neuronal hemoglobin affects dopaminergic cells' response to stress

    Get PDF
    Hemoglobin (Hb) is the major protein in erythrocytes and carries oxygen (O2) throughout the body. Recently, Hb has been found synthesized in atypical sites, including the brain. Hb is highly expressed in A9 dopaminergic (DA) neurons of the substantia nigra (SN), whose selective degeneration leads to Parkinson's disease (PD). Here we show that Hb confers DA cells' susceptibility to 1-methyl-4-phenylpyridinium (MPP(+)) and rotenone, neurochemical cellular models of PD. The toxic property of Hb does not depend on O2 binding and is associated with insoluble aggregate formation in the nucleolus. Neurochemical stress induces epigenetic modifications, nucleolar alterations and autophagy inhibition that depend on Hb expression. When adeno-associated viruses carrying \u3b1- and \u3b2-chains of Hb are stereotaxically injected into mouse SN, Hb forms aggregates and causes motor learning impairment. These results position Hb as a potential player in DA cells' homeostasis and dysfunction in PD. Copyright The Author(s) 201

    Reduced Proliferation in the Adult Mouse Subventricular Zone Increases Survival of Olfactory Bulb Interneurons

    Get PDF
    Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/Îł-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons
    • 

    corecore