31 research outputs found

    Managing existing forests can mitigate climate change

    Get PDF
    Planting new forests has received scientific and political attention as a measure to mitigate climate change. Large, new forests have been planted in places like China and Ethiopia and, over time, a billion hectares could become available globally for planting new forests. Sustainable management of forests, which are available to wood production, has received less attention despite these forests covering at least two billion hectares globally. Better management of existing forests would improve forest growth and help mitigate climate change by increasing the forest carbon (C) stock, by storing C in forest products, and by generating wood-based materials substituting fossil C based materials or other CO2-emission-intensive materials. Some published research assumes a trade-off between the timber harvested from existing forests and the stock of C in those forest ecosystems, asserting that both cannot increase simultaneously. We tested this assumption using the uniquely detailed forest inventory data available from Finland, Norway and Sweden, hereafter denoted northern Europe. We focused on the period 1960 - 2017, that saw little change in the total area covered by forests in northern Europe. At the start of the period, rotational forestry practices began to diffuse, eventually replacing selective felling management systems as the most common management practice. Looking at data over the period we find that despite significant increases in timber and pulp wood harvests, the growth of the forest C stock accelerated. Over the study period, the C stock of the forest ecosystems in northern Europe increased by nearly 70%, while annual timber harvests increased at the about 40% over the same period. This increase in the forest C stock was close to on par with the CO2-emissions from the region (other greenhouse gases not included). Our results suggest that the important effects of management on forest growth allows the forest C stock and timber harvests to increase simultaneously. The development in northern Europe raises the question of how better forest management can improve forest growth elsewhere around the globe while at the same time protecting biodiversity and preserving landscapes

    Managing existing forests can mitigate climate change

    Get PDF
    Planting new forests has received scientific and political attention as a measure to mitigate climate change. Large, new forests have been planted in places like China and Ethiopia and, over time, a billion hectares could become available globally for planting new forests. Sustainable management of forests, which are available to wood production, has received less attention despite these forests covering at least two billion hectares globally. Better management of existing forests would improve forest growth and help mitigate climate change by increasing the forest carbon (C) stock, by storing C in forest products, and by generating wood-based materials substituting fossil C based materials or other CO2-emission-intensive materials. Some published research assumes a trade-off between the timber harvested from existing forests and the stock of C in those forest ecosystems, asserting that both cannot increase simultaneously. We tested this assumption using the uniquely detailed forest inventory data available from Finland, Norway and Sweden, hereafter denoted northern Europe. We focused on the period 1960 - 2017, that saw little change in the total area covered by forests in northern Europe. At the start of the period, rotational forestry practices began to diffuse, eventually replacing selective felling management systems as the most common management practice. Looking at data over the period we find that despite significant increases in timber and pulp wood harvests, the growth of the forest C stock accelerated. Over the study period, the C stock of the forest ecosystems in northern Europe increased by nearly 70%, while annual timber harvests increased at the about 40% over the same period. This increase in the forest C stock was close to on par with the CO2-emissions from the region (other greenhouse gases not included). Our results suggest that the important effects of management on forest growth allows the forest C stock and timber harvests to increase simultaneously. The development in northern Europe raises the question of how better forest management can improve forest growth elsewhere around the globe while at the same time protecting biodiversity and preserving landscapes.Peer reviewe

    Identifying climate-sensitive infectious diseases in animals and humans in Northern regions.

    Get PDF
    BACKGROUND: General knowledge on climate change effects and adaptation strategies has increased significantly in recent years. However, there is still a substantial information gap regarding the influence of climate change on infectious diseases and how these diseases should be identified. From a One Health perspective, zoonotic infections are of particular concern. The climate in Northern regions is changing faster than the global average. This study sought to identify climate-sensitive infectious diseases (CSIs) of relevance for humans and/or animals living in Northern regions. Inclusion criteria for CSIs were constructed using expert assessments. Based on these principles, 37 potential CSIs relevant for Northern regions were identified. A systematic literature search was performed in three databases using an explicit stepwise approach to determine whether the literature supports selection of these 37 potential CSIs. RESULTS: In total, 1275 nominated abstracts were read and categorised using predefined criteria. Results showed that arthropod vector-borne diseases in particular are recognised as having potential to expand their distribution towards Northern latitudes and that tick-borne encephalitis and borreliosis, midge-borne bluetongue and the parasitic infection fasciolosis can be classified as climate-sensitive. Many of the other potential CSIs considered are affected by extreme weather events, but could not be clearly classified as climate-sensitive. An additional literature search comparing awareness of climate influences on potential CSIs between 1997-2006 and 2007-2016 showed an increase in the number of papers mentioning effects of climate change. CONCLUSIONS: The four CSIs identified in this study could be targeted in a systematic surveillance programme in Northern regions. It is evident that climate change can affect the epidemiology and geographical range of many infectious diseases, but there were difficulties in identifying additional CSIs, most likely because other factors may be of equal or greater importance. However, climate-ecological dynamics are constantly under change, and therefore diseases may fall in or out of the climate-sensitive definition over time. There is increasing awareness in the literature of the effects of climate change on infectious diseases over time

    Stödsystem för kundstyrd felsökning av laddstationer för elfordon

    No full text
    The aim of this master thesis is to develop a suggested methodology for how to use Mavenoid infrastructure to improve customer support of DEFA EV chargers. Mavenoid is a company that helps other companies automate customer support, especially troubleshooting. This is done with Mavenoid models, interactive selfhelp tools that guide end users without technical knowledge through the troubleshooting process. Mavenoid models provide value both by deflecting cases (the end user solves the problem on their own using the model) and triaging cases (collect relevant information about the problem before escalating the case to a human support agent) The main methodology to develop a suggested methodology was learning by doing, using the suggested methodology to actually implement Mavenoid models available to end users on DEFA’s home page. This was complemented with a literature review, interviews and data analysis from model usage. The suggested methodology is to iteratively follow the steps of deciding which models to build, make priorities within these models, build the models, analyze their performance and continuously improve the models. To decide models, carefully evaluate DEFA’s support situation to decide where Mavenoid models would have the greatest impact. Force yourself to make quantitative assumptions to estimate a payback time for each possible model. For each model, carefully prioritize what to include and where the focus should be using estimates of frequency, value and time to model. Build the models to maximize deflection and triage and minimize abandoned sessions. Collect and analyze data from model usage and use this information to improve the models. To prioritize between possible improvements, force yourself to make quantitative assumptions of value and time to model and rank improvements by payback time. Limit the improvements you make either by time available or desired payback time. The potential business opportunity between Mavenoid and its customers is more attractive the more support cases the customer has and the larger fraction of end users that use Mavenoid. The business opportunity varies greatly with assumptions that are very difficult to estimate accurately at the early stages of a Mavenoid implementation. This indicates that Mavenoid models should be implemented step by step and assumptions updated when more data is available. Implementing Mavenoid models can be both positive and negative from a sustainable development perspective. They could encourage people to repair products instead of replacing them, scale renewable energy technology faster and remove boring and repetitive tasks from support staff. On the other hand, they might not be appreciated by all end users, could lead to increased electricity consumption and potential unemployment for support staff. Being about a largely unresearched topic, the results in this thesis are relatively subjective. This suggested methodology was used and proved to work to implement Mavenoid models for DEFA EV charging stations but it should be seen as one possible methodology, not the confirmed best methodology.Syftet med detta examensarbete Ă€r att utveckla en metodologi för hur Mavenoids teknologi kan anvĂ€ndas till att förbĂ€ttra kundsupporten för DEFAs elbilsladdare. Mavenoid Ă€r ett företag som hjĂ€lper andra företag att automatisera kundsupport, sĂ€rskilt felsökning. Detta görs med Mavenoidmodeller, interaktiva sjĂ€lvhjĂ€lpsverktyg som guidar slutanvĂ€ndare utan teknisk kunskap genom felsökningsprocessen. Mavenoidmodeller ger vĂ€rde bĂ„de genom att slutanvĂ€ndaren löser problemet pĂ„ egen hand genom att anvĂ€nda modellen (deflection) och genom att samla relevant information om problemet innan Ă€rendet eskaleras till teknisk support (triage). Den huvudsakliga metoden för att utveckla metodologin var att lĂ€ra genom att göra, faktiskt implementera Mavenoidmodeller och göra de tillgĂ€ngliga för slutanvĂ€ndare pĂ„ DEFA: s hemsida. Detta kompletterades med en litteraturöversikt, intervjuer och dataanalys av hur modellerna anvĂ€ndes. Den föreslagna metodologin Ă€r att iterativt följa stegen besluta vilka modeller som ska byggas, prioritera inom dessa modeller, bygga modellerna, analysera data frĂ„n dem och kontinuerligt förbĂ€ttra modellerna. För att bestĂ€mma modeller, utvĂ€rdera DEFAs supportsituation noggrant för att bestĂ€mma var Mavenoid-modellerna skulle ha störst inverkan. Tvinga dig sjĂ€lv att göra kvantitativa antaganden för att uppskatta en Ă„terbetalningstid för varje möjlig modell. För varje modell ska du noggrant prioritera vad du ska inkludera och var fokus ska vara genom att anvĂ€nda uppskattningar av frekvens, vĂ€rde och tid att modellera. Bygg modellerna för att maximera deflection och triage och minimera övergivna sessioner. Samla och analysera data frĂ„n modellerna och anvĂ€nd denna information för att förbĂ€ttra modellerna. För att prioritera mellan möjliga förbĂ€ttringar, tvinga dig sjĂ€lv att göra kvantitativa antaganden om vĂ€rde och tid att modellera och rangordna förbĂ€ttringar efter Ă„terbetalningstid. BegrĂ€nsa de förbĂ€ttringar du gör antingen utifrĂ„n tillgĂ€nglig tid eller önskad Ă„terbetalningstid. Den potentiella affĂ€rsmöjligheten mellan Mavenoid och dess kunder Ă€r mer attraktiv ju fler supportĂ€renden kunden har och ju större andel slutanvĂ€ndare som anvĂ€nder Mavenoid. AffĂ€rsmöjligheten varierar kraftigt med antaganden som Ă€r mycket svĂ„ra att uppskatta i början av ett projekt att implementera Mavenoidmodeller. Detta indikerar att Mavenoidmodeller bör implementeras steg för steg och antaganden uppdateras nĂ€r mer data finns tillgĂ€ngligt. Implementering av Mavenoid-modeller kan vara bĂ„de positivt och negativt sett till hĂ„llbar utveckling. De kan uppmuntra mĂ€nniskor att reparera produkter istĂ€llet för att byta ut dem, skala upp förnybar energiteknologi snabbare och ta bort trĂ„kiga och repetitiva uppgifter frĂ„n teknisk support. Å andra sidan kanske de inte uppskattas av alla slutanvĂ€ndare, kan leda till ökad elförbrukning och potentiell arbetslöshet för de som jobbar inom teknisk support. Eftersom examensarbetet handlar om ett relativt outforskat Ă€mne Ă€r resultaten relativt subjektiva. Denna föreslagna metodologi anvĂ€ndes och visade sig fungera för att implementera Mavenoidmodeller för DEFAs elbilsladdare men den bör ses som en möjlig metodologi, inte den bekrĂ€ftat bĂ€sta metodologin

    Ett stycke pĂ„ vĂ€g : NaturavĂ€ghĂ„llning med lotter i VĂ€stmanlands lĂ€n ca 1750–1850

    No full text
    The aim of this thesis is to analyse how the road allotment system functioned as an institution to mobilise resources and organise the provision of roads. Through this institution every peasant was made responsible for certain parts of a road. The analysis focuses on road repair and maintenance in the Swedish region of VĂ€stmanlands lĂ€n c. 1750–1850. Previous research has described the allotment system as unfair, unprofessional and ineffective in providing a functioning road system and has contrasted it against modern road management based on cash taxes or fees, a central administrative body and professional engineers and workers. The results indicate that the allotment system under certain circumstances helped minimise administrative expenses for mobilising resources and organising work. Through the allotment system local resources throughout the area could be exploited and there was no need to convert tax revenue into output. When roads had been divided into parts it was not necessary to continually plan and manage work efforts, and through the quality inspections punishment could easily be enforced and road standards guaranteed. The allotment model also enabled peasants to perform road work at a convenient time and to make long-term improvements in their road parts. This was only possible when there were no ambiguities concerning limits and occupants of every road section, and a high degree of societal continuity, which was enabled by tying the obligation to homesteads through a constant taxation index. Without these preconditions there was a risk that a section of the road was not maintained at all, making it necessary to redistribute road parts, which was a complicated, time-consuming, and costly process. This was due to difficulties in making small adjustments without influencing all road parts within a large area. Furthermore, an equal distribution of road sections was hard to accomplish since traffic and natural conditions varied, and every part was at a different distance from the gravel pit and from the peasants’ farms. The possibility to mobilise resources within the allotment system was also restricted in time and by the availability of maintenance materials.Det svenska vĂ€gnĂ€tets uppbyggnad 1750-194

    Ett stycke pĂ„ vĂ€g : NaturavĂ€ghĂ„llning med lotter i VĂ€stmanlands lĂ€n ca 1750–1850

    No full text
    The aim of this thesis is to analyse how the road allotment system functioned as an institution to mobilise resources and organise the provision of roads. Through this institution every peasant was made responsible for certain parts of a road. The analysis focuses on road repair and maintenance in the Swedish region of VĂ€stmanlands lĂ€n c. 1750–1850. Previous research has described the allotment system as unfair, unprofessional and ineffective in providing a functioning road system and has contrasted it against modern road management based on cash taxes or fees, a central administrative body and professional engineers and workers. The results indicate that the allotment system under certain circumstances helped minimise administrative expenses for mobilising resources and organising work. Through the allotment system local resources throughout the area could be exploited and there was no need to convert tax revenue into output. When roads had been divided into parts it was not necessary to continually plan and manage work efforts, and through the quality inspections punishment could easily be enforced and road standards guaranteed. The allotment model also enabled peasants to perform road work at a convenient time and to make long-term improvements in their road parts. This was only possible when there were no ambiguities concerning limits and occupants of every road section, and a high degree of societal continuity, which was enabled by tying the obligation to homesteads through a constant taxation index. Without these preconditions there was a risk that a section of the road was not maintained at all, making it necessary to redistribute road parts, which was a complicated, time-consuming, and costly process. This was due to difficulties in making small adjustments without influencing all road parts within a large area. Furthermore, an equal distribution of road sections was hard to accomplish since traffic and natural conditions varied, and every part was at a different distance from the gravel pit and from the peasants’ farms. The possibility to mobilise resources within the allotment system was also restricted in time and by the availability of maintenance materials.Det svenska vĂ€gnĂ€tets uppbyggnad 1750-194

    Stödsystem för kundstyrd felsökning av laddstationer för elfordon

    No full text
    The aim of this master thesis is to develop a suggested methodology for how to use Mavenoid infrastructure to improve customer support of DEFA EV chargers. Mavenoid is a company that helps other companies automate customer support, especially troubleshooting. This is done with Mavenoid models, interactive selfhelp tools that guide end users without technical knowledge through the troubleshooting process. Mavenoid models provide value both by deflecting cases (the end user solves the problem on their own using the model) and triaging cases (collect relevant information about the problem before escalating the case to a human support agent) The main methodology to develop a suggested methodology was learning by doing, using the suggested methodology to actually implement Mavenoid models available to end users on DEFA’s home page. This was complemented with a literature review, interviews and data analysis from model usage. The suggested methodology is to iteratively follow the steps of deciding which models to build, make priorities within these models, build the models, analyze their performance and continuously improve the models. To decide models, carefully evaluate DEFA’s support situation to decide where Mavenoid models would have the greatest impact. Force yourself to make quantitative assumptions to estimate a payback time for each possible model. For each model, carefully prioritize what to include and where the focus should be using estimates of frequency, value and time to model. Build the models to maximize deflection and triage and minimize abandoned sessions. Collect and analyze data from model usage and use this information to improve the models. To prioritize between possible improvements, force yourself to make quantitative assumptions of value and time to model and rank improvements by payback time. Limit the improvements you make either by time available or desired payback time. The potential business opportunity between Mavenoid and its customers is more attractive the more support cases the customer has and the larger fraction of end users that use Mavenoid. The business opportunity varies greatly with assumptions that are very difficult to estimate accurately at the early stages of a Mavenoid implementation. This indicates that Mavenoid models should be implemented step by step and assumptions updated when more data is available. Implementing Mavenoid models can be both positive and negative from a sustainable development perspective. They could encourage people to repair products instead of replacing them, scale renewable energy technology faster and remove boring and repetitive tasks from support staff. On the other hand, they might not be appreciated by all end users, could lead to increased electricity consumption and potential unemployment for support staff. Being about a largely unresearched topic, the results in this thesis are relatively subjective. This suggested methodology was used and proved to work to implement Mavenoid models for DEFA EV charging stations but it should be seen as one possible methodology, not the confirmed best methodology.Syftet med detta examensarbete Ă€r att utveckla en metodologi för hur Mavenoids teknologi kan anvĂ€ndas till att förbĂ€ttra kundsupporten för DEFAs elbilsladdare. Mavenoid Ă€r ett företag som hjĂ€lper andra företag att automatisera kundsupport, sĂ€rskilt felsökning. Detta görs med Mavenoidmodeller, interaktiva sjĂ€lvhjĂ€lpsverktyg som guidar slutanvĂ€ndare utan teknisk kunskap genom felsökningsprocessen. Mavenoidmodeller ger vĂ€rde bĂ„de genom att slutanvĂ€ndaren löser problemet pĂ„ egen hand genom att anvĂ€nda modellen (deflection) och genom att samla relevant information om problemet innan Ă€rendet eskaleras till teknisk support (triage). Den huvudsakliga metoden för att utveckla metodologin var att lĂ€ra genom att göra, faktiskt implementera Mavenoidmodeller och göra de tillgĂ€ngliga för slutanvĂ€ndare pĂ„ DEFA: s hemsida. Detta kompletterades med en litteraturöversikt, intervjuer och dataanalys av hur modellerna anvĂ€ndes. Den föreslagna metodologin Ă€r att iterativt följa stegen besluta vilka modeller som ska byggas, prioritera inom dessa modeller, bygga modellerna, analysera data frĂ„n dem och kontinuerligt förbĂ€ttra modellerna. För att bestĂ€mma modeller, utvĂ€rdera DEFAs supportsituation noggrant för att bestĂ€mma var Mavenoid-modellerna skulle ha störst inverkan. Tvinga dig sjĂ€lv att göra kvantitativa antaganden för att uppskatta en Ă„terbetalningstid för varje möjlig modell. För varje modell ska du noggrant prioritera vad du ska inkludera och var fokus ska vara genom att anvĂ€nda uppskattningar av frekvens, vĂ€rde och tid att modellera. Bygg modellerna för att maximera deflection och triage och minimera övergivna sessioner. Samla och analysera data frĂ„n modellerna och anvĂ€nd denna information för att förbĂ€ttra modellerna. För att prioritera mellan möjliga förbĂ€ttringar, tvinga dig sjĂ€lv att göra kvantitativa antaganden om vĂ€rde och tid att modellera och rangordna förbĂ€ttringar efter Ă„terbetalningstid. BegrĂ€nsa de förbĂ€ttringar du gör antingen utifrĂ„n tillgĂ€nglig tid eller önskad Ă„terbetalningstid. Den potentiella affĂ€rsmöjligheten mellan Mavenoid och dess kunder Ă€r mer attraktiv ju fler supportĂ€renden kunden har och ju större andel slutanvĂ€ndare som anvĂ€nder Mavenoid. AffĂ€rsmöjligheten varierar kraftigt med antaganden som Ă€r mycket svĂ„ra att uppskatta i början av ett projekt att implementera Mavenoidmodeller. Detta indikerar att Mavenoidmodeller bör implementeras steg för steg och antaganden uppdateras nĂ€r mer data finns tillgĂ€ngligt. Implementering av Mavenoid-modeller kan vara bĂ„de positivt och negativt sett till hĂ„llbar utveckling. De kan uppmuntra mĂ€nniskor att reparera produkter istĂ€llet för att byta ut dem, skala upp förnybar energiteknologi snabbare och ta bort trĂ„kiga och repetitiva uppgifter frĂ„n teknisk support. Å andra sidan kanske de inte uppskattas av alla slutanvĂ€ndare, kan leda till ökad elförbrukning och potentiell arbetslöshet för de som jobbar inom teknisk support. Eftersom examensarbetet handlar om ett relativt outforskat Ă€mne Ă€r resultaten relativt subjektiva. Denna föreslagna metodologi anvĂ€ndes och visade sig fungera för att implementera Mavenoidmodeller för DEFAs elbilsladdare men den bör ses som en möjlig metodologi, inte den bekrĂ€ftat bĂ€sta metodologin

    Stödsystem för kundstyrd felsökning av laddstationer för elfordon

    No full text
    The aim of this master thesis is to develop a suggested methodology for how to use Mavenoid infrastructure to improve customer support of DEFA EV chargers. Mavenoid is a company that helps other companies automate customer support, especially troubleshooting. This is done with Mavenoid models, interactive selfhelp tools that guide end users without technical knowledge through the troubleshooting process. Mavenoid models provide value both by deflecting cases (the end user solves the problem on their own using the model) and triaging cases (collect relevant information about the problem before escalating the case to a human support agent) The main methodology to develop a suggested methodology was learning by doing, using the suggested methodology to actually implement Mavenoid models available to end users on DEFA’s home page. This was complemented with a literature review, interviews and data analysis from model usage. The suggested methodology is to iteratively follow the steps of deciding which models to build, make priorities within these models, build the models, analyze their performance and continuously improve the models. To decide models, carefully evaluate DEFA’s support situation to decide where Mavenoid models would have the greatest impact. Force yourself to make quantitative assumptions to estimate a payback time for each possible model. For each model, carefully prioritize what to include and where the focus should be using estimates of frequency, value and time to model. Build the models to maximize deflection and triage and minimize abandoned sessions. Collect and analyze data from model usage and use this information to improve the models. To prioritize between possible improvements, force yourself to make quantitative assumptions of value and time to model and rank improvements by payback time. Limit the improvements you make either by time available or desired payback time. The potential business opportunity between Mavenoid and its customers is more attractive the more support cases the customer has and the larger fraction of end users that use Mavenoid. The business opportunity varies greatly with assumptions that are very difficult to estimate accurately at the early stages of a Mavenoid implementation. This indicates that Mavenoid models should be implemented step by step and assumptions updated when more data is available. Implementing Mavenoid models can be both positive and negative from a sustainable development perspective. They could encourage people to repair products instead of replacing them, scale renewable energy technology faster and remove boring and repetitive tasks from support staff. On the other hand, they might not be appreciated by all end users, could lead to increased electricity consumption and potential unemployment for support staff. Being about a largely unresearched topic, the results in this thesis are relatively subjective. This suggested methodology was used and proved to work to implement Mavenoid models for DEFA EV charging stations but it should be seen as one possible methodology, not the confirmed best methodology.Syftet med detta examensarbete Ă€r att utveckla en metodologi för hur Mavenoids teknologi kan anvĂ€ndas till att förbĂ€ttra kundsupporten för DEFAs elbilsladdare. Mavenoid Ă€r ett företag som hjĂ€lper andra företag att automatisera kundsupport, sĂ€rskilt felsökning. Detta görs med Mavenoidmodeller, interaktiva sjĂ€lvhjĂ€lpsverktyg som guidar slutanvĂ€ndare utan teknisk kunskap genom felsökningsprocessen. Mavenoidmodeller ger vĂ€rde bĂ„de genom att slutanvĂ€ndaren löser problemet pĂ„ egen hand genom att anvĂ€nda modellen (deflection) och genom att samla relevant information om problemet innan Ă€rendet eskaleras till teknisk support (triage). Den huvudsakliga metoden för att utveckla metodologin var att lĂ€ra genom att göra, faktiskt implementera Mavenoidmodeller och göra de tillgĂ€ngliga för slutanvĂ€ndare pĂ„ DEFA: s hemsida. Detta kompletterades med en litteraturöversikt, intervjuer och dataanalys av hur modellerna anvĂ€ndes. Den föreslagna metodologin Ă€r att iterativt följa stegen besluta vilka modeller som ska byggas, prioritera inom dessa modeller, bygga modellerna, analysera data frĂ„n dem och kontinuerligt förbĂ€ttra modellerna. För att bestĂ€mma modeller, utvĂ€rdera DEFAs supportsituation noggrant för att bestĂ€mma var Mavenoid-modellerna skulle ha störst inverkan. Tvinga dig sjĂ€lv att göra kvantitativa antaganden för att uppskatta en Ă„terbetalningstid för varje möjlig modell. För varje modell ska du noggrant prioritera vad du ska inkludera och var fokus ska vara genom att anvĂ€nda uppskattningar av frekvens, vĂ€rde och tid att modellera. Bygg modellerna för att maximera deflection och triage och minimera övergivna sessioner. Samla och analysera data frĂ„n modellerna och anvĂ€nd denna information för att förbĂ€ttra modellerna. För att prioritera mellan möjliga förbĂ€ttringar, tvinga dig sjĂ€lv att göra kvantitativa antaganden om vĂ€rde och tid att modellera och rangordna förbĂ€ttringar efter Ă„terbetalningstid. BegrĂ€nsa de förbĂ€ttringar du gör antingen utifrĂ„n tillgĂ€nglig tid eller önskad Ă„terbetalningstid. Den potentiella affĂ€rsmöjligheten mellan Mavenoid och dess kunder Ă€r mer attraktiv ju fler supportĂ€renden kunden har och ju större andel slutanvĂ€ndare som anvĂ€nder Mavenoid. AffĂ€rsmöjligheten varierar kraftigt med antaganden som Ă€r mycket svĂ„ra att uppskatta i början av ett projekt att implementera Mavenoidmodeller. Detta indikerar att Mavenoidmodeller bör implementeras steg för steg och antaganden uppdateras nĂ€r mer data finns tillgĂ€ngligt. Implementering av Mavenoid-modeller kan vara bĂ„de positivt och negativt sett till hĂ„llbar utveckling. De kan uppmuntra mĂ€nniskor att reparera produkter istĂ€llet för att byta ut dem, skala upp förnybar energiteknologi snabbare och ta bort trĂ„kiga och repetitiva uppgifter frĂ„n teknisk support. Å andra sidan kanske de inte uppskattas av alla slutanvĂ€ndare, kan leda till ökad elförbrukning och potentiell arbetslöshet för de som jobbar inom teknisk support. Eftersom examensarbetet handlar om ett relativt outforskat Ă€mne Ă€r resultaten relativt subjektiva. Denna föreslagna metodologi anvĂ€ndes och visade sig fungera för att implementera Mavenoidmodeller för DEFAs elbilsladdare men den bör ses som en möjlig metodologi, inte den bekrĂ€ftat bĂ€sta metodologin

    Att undvika en arktisk tragedi : Kollektiv förvaltning av fisket i Arktiska oceanens internationella vatten

    No full text
    In a time of climate change the Arctic region is undergoing rapid changes, and the decreasing sea ice cover is expected to draw increased commercial interests as The Arctic Ocean gets more accessible for resource exploitation. The central part of the ocean is common area, where, in theory, overfishing may result in a tragedy of the commons and related fish stocks collapse. This study aims to provide insights into how fishing in the central Arctic Ocean relates to successful collective management, and was conducted using Elinor Ostroms design principles and The Logic of Collective Action as a framework for an ideal type inspired analysis. The results show that conditions for collective fisheries management in the central Arctic Ocean are relatively good, and it’s concluded that collective fisheries management is already embraced and enacted upon by several actors. However, to attain the ideal state of collective management further improvements are required, although there are also multiple options as to how such requirements could be met and there was no indication of why collective management would be unsuccessful.I samband med ett förĂ€ndrat klimat sĂ„ genomgĂ„r Ă€ven den arktiska regionen snabba förĂ€ndringar, dĂ€r den minskande havsisen i Arktiska oceanen ger ökad tillgĂ„ng till naturresurser och förvĂ€ntas dra allt större kommersiella intressen. Den centrala delen av oceanen Ă€r en allmĂ€nning, vilken enligt teorin kan överfiskas och resultera i en allmĂ€nningens tragedi och relaterade kollapser av fiskbestĂ„nd. Denna studie Ă€mnar ge en insikt i hur fisket i centrala Arktiska oceanen förhĂ„ller sig till lyckad kollektiv förvaltning, och utfördes genom att lĂ„ta Elinor Ostroms designprinciper och det kollektiva handlandets logik utgöra ett ramverk för en idealtypsinspirerad analys. Resultaten visar att förutsĂ€ttningarna för kollektiv förvaltning Ă€r relativt goda och att fisket i viss utstrĂ€ckning redan förvaltas kollektivt. För att uppnĂ„ en idealtypisk kollektiv fiskeförvaltning framgĂ„r det dock att ytterligare insatser behövs men att det Ă€ven finns flera alternativ för att möta dessa behov, och det fanns heller ingen antydan av att kollektiv förvaltning skulle misslyckas

    Ett stycke pĂ„ vĂ€g : NaturavĂ€ghĂ„llning med lotter i VĂ€stmanlands lĂ€n ca 1750–1850

    No full text
    The aim of this thesis is to analyse how the road allotment system functioned as an institution to mobilise resources and organise the provision of roads. Through this institution every peasant was made responsible for certain parts of a road. The analysis focuses on road repair and maintenance in the Swedish region of VĂ€stmanlands lĂ€n c. 1750–1850. Previous research has described the allotment system as unfair, unprofessional and ineffective in providing a functioning road system and has contrasted it against modern road management based on cash taxes or fees, a central administrative body and professional engineers and workers. The results indicate that the allotment system under certain circumstances helped minimise administrative expenses for mobilising resources and organising work. Through the allotment system local resources throughout the area could be exploited and there was no need to convert tax revenue into output. When roads had been divided into parts it was not necessary to continually plan and manage work efforts, and through the quality inspections punishment could easily be enforced and road standards guaranteed. The allotment model also enabled peasants to perform road work at a convenient time and to make long-term improvements in their road parts. This was only possible when there were no ambiguities concerning limits and occupants of every road section, and a high degree of societal continuity, which was enabled by tying the obligation to homesteads through a constant taxation index. Without these preconditions there was a risk that a section of the road was not maintained at all, making it necessary to redistribute road parts, which was a complicated, time-consuming, and costly process. This was due to difficulties in making small adjustments without influencing all road parts within a large area. Furthermore, an equal distribution of road sections was hard to accomplish since traffic and natural conditions varied, and every part was at a different distance from the gravel pit and from the peasants’ farms. The possibility to mobilise resources within the allotment system was also restricted in time and by the availability of maintenance materials.Det svenska vĂ€gnĂ€tets uppbyggnad 1750-194
    corecore