218 research outputs found

    Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties

    Full text link
    Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions, which create favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg2_2SiO4_4 and MgSiO3_3). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg2_2SiO4_4 grains to calculate the first extensive set of time-dependent wind models for M-type AGB stars. The resulting wind properties, visual and near-IR photometry and mid-IR spectra are compared with observations.We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they reproduce observed mass-loss rates and wind velocities, as well as visual and near-IR photometry. However, the current models do not show the characteristic silicate features at 10 and 18 μ\mum as a result of the cool temperature of Mg2_2SiO4_4 grains in the wind. Including a small amount of Fe in the grains further out in the circumstellar envelope will increase the grain temperature and result in pronounced silicate features, without significantly affecting the photometry in the visual and near-IR wavelength regions.Comment: 11 pages, 14 figure

    Pulsation-induced atmospheric dynamics in M-type AGB stars. Effects on wind properties, photometric variations and near-IR CO line profiles

    Full text link
    Wind-driving in asymptotic giant branch (AGB) stars is commonly attributed to a two-step process. First, matter in the stellar atmosphere is levitated by shock waves, induced by stellar pulsation, and second, this matter is accelerated by radiation pressure on dust, resulting in a wind. In dynamical atmosphere and wind models the effects of the stellar pulsation are often simulated by a simplistic prescription at the inner boundary. We test a sample of dynamical models for M-type AGB stars, for which we kept the stellar parameters fixed to values characteristic of a typical Mira variable but varied the inner boundary condition. The aim was to evaluate the effect on the resulting atmosphere structure and wind properties. The results of the models are compared to observed mass-loss rates and wind velocities, photometry, and radial velocity curves, and to results from 1D radial pulsation models. Dynamical atmosphere models are calculated, using the DARWIN code for different combinations of photospheric velocities and luminosity variations. The inner boundary is changed by introducing an offset between maximum expansion of the stellar surface and the luminosity and/or by using an asymmetric shape for the luminosity variation. Models that resulted in realistic wind velocities and mass-loss rates, when compared to observations, also produced realistic photometric variations. For the models to also reproduce the characteristic radial velocity curve present in Mira stars (derived from CO Δv=3\Delta v = 3 lines), an overall phase shift of 0.2 between the maxima of the luminosity and radial variation had to be introduced. We find that a group of models with different boundary conditions (29 models, including the model with standard boundary conditions) results in realistic velocities and mass-loss rates, and in photometric variations

    Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    Full text link
    Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. The first model with dust and stellar wind is very sensitive to moderate changes in the luminosity variation. There is a complex relationship between the luminosity minimum, and dust condensation: changing the phase corresponding to minimum luminosity can either increase or decrease mass-loss rate and wind velocity. The luminosity maximum dominates the radiative pressure on the dust, which in turn, is important for driving the wind. These effects of changed luminosity variation are coupled with the dust formation. In contrast there is very little change to the structure of the model without dust. Changing the luminosity variation, both by introducing a phase shift and by modifying the shape, influences wind velocity and the mass-loss rate. To improve wind models it would probably be desirable to extract boundary conditions from 3D dynamical interior models or stellar pulsation models.Comment: 11 pages, 13 figures, accepted for publication in A&

    Exploring wind-driving dust species in cool luminous giants II. Constraints from photometry of M-type AGB stars

    Full text link
    The heavy mass loss observed in evolved asymptotic giant branch (AGB) stars is usually attributed to a two-stage process: atmospheric levitation by pulsation-induced shock waves, followed by radiative acceleration of newly formed dust grains. The dust transfers momentum to the surrounding gas through collisions and thereby triggers a general outflow. Radiation-hydrodynamical models of M-type AGB stars suggest that these winds can be driven by photon scattering -- in contrast to absorption -- on Fe-free silicate grains of sizes 0.1--1\,μ\mum. In this paper we study photometric constraints for wind-driving dust species in M-type AGB stars, as part of an ongoing effort to identify likely candidates among the grain materials observed in circumstellar envelopes. To investigate the scenario of stellar winds driven by photon scattering on dust, and to explore how different optical and chemical properties of wind-driving dust species affect photometry we focus on two sets of dynamical models atmospheres: (i) models using a detailed description for the growth of Mg2_2SiO4_4 grains, taking into account both scattering and absorption cross-sections when calculating the radiative acceleration, and (ii) models using a parameterized dust description, constructed to represent different chemical and optical dust properties. By comparing synthetic photometry from these two sets of models to observations of M-type AGB stars we can provide constraints on the properties of wind-driving dust species. Photometry from wind models with a detailed description for the growth of Mg2_2SiO4_4 grains reproduces well both the values and the time-dependent behavior of observations of M-type AGB stars, providing further support for the scenario of winds driven by photon scattering on dust.Comment: Accepted for publication in A&A. 15 pages, 14 figure

    Intense Mass Loss from C-rich AGB Stars at low Metallicity?

    Full text link
    We argue that the energy injection of pulsations may be of greater importance to the mass-loss rate of AGB stars than metallicity, and that the mass-loss trend with metallicity is not as simple as sometimes assumed. Using our detailed radiation hydrodynamical models that include dust formation, we illustrate the effects of pulsation energy on wind properties. We find that the mass-loss rate scales with the kinetic energy input by pulsations as long as a dust-saturated wind does not occur, and all other stellar parameters are kept constant. This includes the absolute abundance of condensible carbon (not bound in CO), which is more relevant than keeping the C/O-ratio constant when comparing stars of different metallicity. The pressure and temperature gradients in the atmospheres of stars, become steeper and flatter, respectively, when the metallicity is reduced, while the radius where the atmosphere becomes opaque is typically associated with a higher gas pressure. This effect can be compensated for by adjusting the velocity amplitude of the variable inner boundary (piston), which is used to simulate the effects of pulsation, to obtain models with comparable kinetic-energy input. Hence, it is more relevant to compare models with similar energy-injections than of similar velocity amplitude. Since there is no evidence for weaker pulsations in low-metallicity AGB stars, we conclude that it is unlikely that low-metallicity C-stars have a lower mass-loss rate, than their more metal-rich counterparts with similar stellar parameters, as long as they have a comparable amount of condensible carbon.Comment: 4 pages, 3 figures. Accepted for publication in A&A. Updated after language editing. Additional typos fixe

    Autowaves in a dc complex plasma confined behind a de Laval nozzle

    Full text link
    Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly ionized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {\mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.Comment: 6 pages, 4 figure

    4mu spectra of AGB stars I: Observations

    Full text link
    We present times series of high resolution spectra of AGB variables at 4mu. Line profiles from the major contributors to the spectra of oxygen rich stars at 4mu, OH, H2_2O, HCl and SiO, are examined. The velocity as well as shape variations of these profiles with time are discussed. The line profiles investigated frequently have emission and multiple absorption components. The changes with time of the 4mu region lines do not always follow the cyclic variability seen in NIR spectra and in the photometric light curve. We interpret and discuss the results qualitatively considering comparing the spectral variability with that of the well behaved 1.6mu region and of dynamical model atmospheres. Miras and semiregular variables are compared. The origins of non-periodic behavior are discussed, including the role of spatial inhomogeneities in the stellar atmosphere.Comment: 14 pages, 12 figures, accepted for publication in A&

    Abundance analysis for long period variables. Velocity effects studied with O-rich dynamic model atmospheres

    Full text link
    (abbreviated) Measuring the surface abundances of AGB stars is an important tool for studying the effects of nucleosynthesis and mixing in the interior of low- to intermediate mass stars during their final evolutionary phases. The atmospheres of AGB stars can be strongly affected by stellar pulsation and the development of a stellar wind, though, and the abundance determination of these objects should therefore be based on dynamic model atmospheres. We investigate the effects of stellar pulsation and mass loss on the appearance of selected spectral features (line profiles, line intensities) and on the derived elemental abundances by performing a systematic comparison of hydrostatic and dynamic model atmospheres. High-resolution synthetic spectra in the near infrared range were calculated based on two dynamic model atmospheres (at various phases during the pulsation cycle) as well as a grid of hydrostatic COMARCS models. Equivalent widths of a selection of atomic and molecular lines were derived in both cases and compared with each other. In the case of the dynamic models, the equivalent widths of all investigated features vary over the pulsation cycle. A consistent reproduction of the derived variations with a set of hydrostatic models is not possible, but several individual phases and spectral features can be reproduced well with the help of specific hydrostatic atmospheric models. In addition, we show that the variations in equivalent width that we found on the basis of the adopted dynamic model atmospheres agree qualitatively with observational results for the Mira R Cas over its light cycle. The findings of our modelling form a starting point to deal with the problem of abundance determination in strongly dynamic AGB stars (i.e., long-period variables).Comment: 13 pages, 22 figures, accepted for publication in A&

    Clumpy dust clouds and extended atmosphere of the AGB star W Hydrae revealed with VLT/SPHERE-ZIMPOL and VLTI/AMBER

    Full text link
    Context. Dust formation is thought to play an important role in the mass loss from stars at the asymptotic giant branch (AGB); however, where and how dust forms is still open to debate. Aims. We present visible polarimetric imaging observations of the well-studied AGB star W Hya taken with VLT/SPHERE-ZIMPOL as well as high spectral resolution long-baseline interferometric observations taken with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). Our goal is to spatially resolve the dust and molecule formation region within a few stellar radii. Methods. We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Hα line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 μm with a spectral resolution of 12000. Results. Taking advantage of the polarimetric imaging capability of SPHERE-ZIMPOL combined with the superb adaptive optics performance, we succeeded in spatially resolving three clumpy dust clouds located at ~50 mas (~2 R⋆) from the central star, revealing dust formation very close to the star. The AMBER data in the individual CO lines suggest a molecular outer atmosphere extending to ~3 R⋆. Furthermore, the SPHERE-ZIMPOL image taken over the Hα line shows emission with a radius of up to ~160 mas (~7 R⋆). We found that dust, molecular gas, and Hα-emitting hot gas coexist within 2–3 R⋆. Our modeling suggests that the observed polarized intensity maps can reasonably be explained by large (0.4–0.5 μm) grains of Al2O3, Mg2SiO4, or MgSiO3 in an optically thin shell (τ550nm = 0.1 ± 0.02) with an inner and outer boundary radius of 1.9–2.0 R⋆ and 3 ± 0.5R⋆, respectively. The observed clumpy structure can be reproduced by a density enhancement of a factor of 4 ± 1. Conclusions. The grain size derived from our modeling of the SPHERE-ZIMPOL polarimetric images is consistent with the prediction of the hydrodynamical models for the mass loss driven by the scattering due to micron-sized grains. The detection of the clumpy dust clouds close to the star lends support to the dust formation induced by pulsation and large convective cells as predicted by the 3D simulations for AGB stars

    Homochiral growth through enantiomeric cross-inhibition

    Full text link
    The stability and conservation properties of a recently proposed polymerization model are studied. The achiral (racemic) solution is linearly unstable once the relevant control parameter (here the fidelity of the catalyst) exceeds a critical value. The growth rate is calculated for different fidelity parameters and cross-inhibition rates. A chirality parameter is defined and shown to be conserved by the nonlinear terms of the model. Finally, a truncated version of the model is used to derive a set of two ordinary differential equations and it is argued that these equations are more realistic than those used in earlier models of that form.Comment: 20 pages, 6 figures, Orig. Life Evol. Biosph. (accepted
    • …
    corecore